NASA Technical Memorandum 4209 # Three-Dimensional Cavity Flow Fields at Subsonic and Transonic Speeds E. B. Plentovich Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division # **Summary** An experimental investigation was conducted to expand the data base and knowledge of flow fields in cavities over the subsonic and transonic speed regimes. A rectangular, three-dimensional cavity was tested over a Mach number range from 0.30 to 0.95 and at Reynolds numbers per foot from 1.0×10^6 to 4.2×10^6 . Two sizes of cavities with length-to-height ratios (l/h) of 4.4 and 11.7 and with rectangular and nonrectangular cross sections were tested. Extensive static pressure data on the model walls were obtained, and a complete tabulation of the pressure data is presented. The boundary layer approaching the cavity was turbulent, and the thickness was measured with a total pressure rake. The static pressure measurements obtained with the deep-cavity configuration (l/h = 4.4) at Reynolds numbers greater than 3.0×10^6 per foot showed large fluctuations during the data sampling time. The data showed much less unsteadiness at lower Reynolds numbers for the deep cavity and for all conditions tested with the shallow cavity. Although mean static pressure distributions have been used in past cavity analyses at transonic free-stream conditions, the data presented in this report indicate that consideration of the instantaneous pressure distributions is necessary. The data also indicate that the shallow-cavity static pressure measurements were sensitive to the thickness of the boundary layer entering the cavity. ## Introduction Many investigations, both experimental (refs. 1-9) and computational (refs. 10-17), have been conducted to study the flow field inside two- and three-dimensional rectangular cavities. Although investigations have been conducted from the subsonic to the hypersonic regimes, most of the effort has concentrated on the supersonic speed regime for application to military aircraft. Because of a renewed interest in the internal carriage of stores, a basic study of cavity flow at subsonic and transonic speeds has been conducted. Three types of mean flow over the cavity (fig. 1) exist at supersonic speeds. The first type of mean flow occurs when the cavity is "deep" and is termed open-cavity flow. In open-cavity flow, the flow essentially bridges the cavity, and a shear layer is formed over the cavity. A weak shock can form near the leading edge of the cavity as a result of the flow being compressed slightly by the shear layer. The second type of mean flow occurs when the cavity is "shallow" and is termed closed-cavity flow. In closed-cavity flow, the flow separates at the forward face of the cavity, reattaches at some point along the cavity floor, and separates again before reaching the rear cavity face. In this flow field two distinct separation regions are created; one is downstream of the forward face, and one is upstream of the rear face. The third mean flow occurs in the region where the flow field changes from closed- to open-cavity flow and is termed transitional-cavity flow. Stallings and Wilcox (ref. 4) have found that transitional flow occurs in supersonic free-stream conditions for l/h ratios between approximately 10 and 13. The open- and closed-cavity flow fields can have undesirable effects on the store or cavity at supersonic speeds. For the open-cavity flow field, high-intensity tones can be produced which can induce structural vibration (ref. 9). When closed-cavity flow fields are present, the cavity pressure gradient can impact adversely the store separation characteristics (ref. 18). The type of flow field which is present in the cavity must be known to ensure good carriage and separation characteristics for the store. Research on cavity flow in the transonic speed regime has been limited (refs. 1, 2, and 6). Most of this work focused on cavities with l/h ratios between 4 and 10. The pressure distributions from these cavity studies showed that at transonic speeds the flow field inside a cavity was similar to the flow field that developed at supersonic speeds and that the three types of mean flow occurred for approximately the same values of l/h. To accomplish the internal carriage and release of stores at transonic speeds, the cavity flow field must be understood more fully. This investigation was conducted to expand the data base and knowledge of flow fields in cavities for subsonic and transonic regimes and to study the effects of Reynolds number on cavity flow fields. A rectangular, threedimensional cavity model (ref. 19) was tested in the David Taylor Research Center (DTRC) 7- by 10-Foot Transonic Wind Tunnel (TWT) at Mach numbers from 0.30 to 0.95 and at Reynolds numbers from 1.0×10^6 to 4.2×10^6 per foot. Two sizes of cavities (l/h = 4.4 and 11.7) were tested and extensive static pressure data on the model were obtained. The boundary layer approaching the cavity was turbulent and had been thickened artificially. The boundarylayer thickness was measured with a rake 2 in. upstream of the cavity. # **Symbols** Symbols in parentheses are found in tables IV-XI. $$C_p$$ (CPxxx) coefficient of pressure, $\frac{p-p_\infty}{q_\infty}$ $$C_p^*$$ critical pressure coefficient | h | cavity depth, ft | |----------------|---| | l | cavity length, ft | | M_{∞} | free-stream Mach number | | p | measured surface static pressure, psf | | p_{∞} | free-stream static pressure, psf | | p_t | measured local total pressure, psf | | $p_{t\infty}$ | free-stream total pressure, psf | | q_{∞} | free-stream dynamic pressure, psf | | R_{∞} | free-stream unit Reynolds number, per ft | | t | time, sec | | $T_{t\infty}$ | free-stream total temperature, ${^\circ}{\rm F}$ | | U/U_{∞} | ratio of local velocity to free-stream velocity | | w | cavity width, ft | | x | distance in streamwise direction, ft (see fig. 4) | | y | distance in spanwise direction, ft (see fig. 4) | | z | distance normal to flat plate, ft (see fig. 4) | | δ | boundary-layer thickness, in. | # **Experimental Methods** #### Wind-Tunnel Description The transonic cavity flow model was tested in the DTRC 7- by 10-Foot TWT. The 7- by 10-Foot TWT is a continuous-flow, transonic facility that is capable of operating over a Mach number range from 0.2 to 1.17. The tunnel can obtain Reynolds numbers per foot from approximately 1.0×10^6 to 5.5×10^6 . A diagram that shows the operating range of the 7-by 10-Foot TWT is provided in figure 2. The solid circles (fig. 2) denote the conditions at which the present test has been conducted. More information concerning this facility is documented in reference 19. #### Model Description A rectangular, three-dimensional cavity was mounted in a flat plate; a photograph of the model mounted in the tunnel is shown in figure 3. A flat plate was chosen as the parent body to allow a well-defined two-dimensional flow field to develop ahead of the cavity. The model was supported in the center of the tunnel by six legs. The forward two legs on each side were swept to distribute longitudinally the model cross-sectional area for blockage considerations. Two guy wires were attached to opposite sides of the plate to increase lateral stiffness and stability. The 12:1 elliptical contour of the leading edge and the trailing-edge flap were chosen to reduce the leading-edge pressure gradient. (The trailing-edge flap had little effect on the leading-edge pressure distribution.) A fairing was placed around the cavity on the underside of the plate for aerodynamic purposes. The cavity had a length of 3.5 ft, a width of 0.8 ft, and a maximum depth of 0.8 ft. The model dimensions are shown in figure 4. The cavity floor could be moved from the maximum depth of 0.8 ft to a depth of 0.3 ft or to the plate surface. The configuration with no cavity, the floor at the plate surface, was used when the boundary-layer thickness was measured. The cavity l/h values tested were 4.4 for the deeper configuration (h = 0.8 ft) and 11.7 for the more shallow configuration (h = 0.3 ft). In addition to the basic rectangular box cavity, three additional cavity configurations were tested. Two of these configurations were variations on the empty cavity shape and were made by inserting wooden blocks inside the cavity (fig. 5). The front blocks consisted of two triangular blocks placed in the forward corners of the cavity to give the cavity leading edge a pointed shape (fig. 5(a)). The rear block was a single block placed in the aft portion of the cavity to create a ramp (fig. 5(b)). intent of changing the cavity shape was to affect the pressure waves inside the cavity. inside the cavity were expected to be reduced if the wave front could be disrupted. (Heller and Bliss (ref. 9) give a detailed description of the pressure wave activity inside a cavity.) Dynamic transducers had been installed on the cavity floor to enable frequency spectra in the cavity to be calculated, but the measurements obtained were in error; therefore, the data were not reduced. Due to time constraints. the deep cavity was tested only with blocks in the forward portion of the cavity. The shallow cavity was tested in both configurations, with either the front blocks or with a rear block. The shallow cavity also was tested in a third configuration, which was a sawtooth fence installed at the cavity leading edge (fig. 6). The purpose of a leading-edge fence was to help the flow span the length of the cavity, thereby reducing unfavorable store separation characteristics associated with the closed (shallow) cavity. To have the most effect on the shear layer, experience has shown that the fence height should be between 3/4 to 1 times the boundary-layer thickness.
The expected boundary-layer thickness was 0.8 in. for this test, so a fence height of 0.7 in. was chosen for the test. A table that summarizes the model configurations tested is given below. | Configuration | l/h | |---------------|-----------| | Empty | 4.4, 11.7 | | Front blocks | 4.4, 11.7 | | Rear block | 11.7 | | Fence | 11.7 | The model was instrumented with 262 static pressure orifices. A majority of these orifices were concentrated on the cavity walls. Figure 7 shows the regions on the model where the orifices were located, and table I provides the static pressure orifice locations. (Note that the orifice number was assigned by instrumentation hookup; therefore, the numbers are not consecutive.) Not all orifices were available for all configurations tested. #### **Test Conditions** The model was tested in the DTRC 7- by 10-Foot TWT at Mach numbers from 0.3 to 0.95 and at Reynolds numbers ranging from 1.0×10^6 to 4.2×10^6 per foot. The Reynolds number was varied for fixed Mach numbers between 0.60 and 0.90. Table II provides a summary of the nominal test conditions. #### Measurements Surface static pressures. The model static pressures were measured using electronically scanned pressure (ESP) transducers that were referenced to the tunnel static pressure; these transducers had a range of ± 5 psid and a quoted accuracy of ± 0.01 psi. The tunnel static and total pressures were measured using individual quartz transducers with a quoted accuracy of 0.03 percent of the full-scale range (30 psia). During the experimental investigation, a C_p versus x/l plot of the pressures on the deep cavity (l/h = 4.4) centerline was displayed and updated continuously. Observation of the static pressure data indicated the possibility of a pressure wave in the cavity. Earlier tests (refs. 1–5 and 7–9) did not report this unsteady characteristic of static pressure data; in fact, for supersonic free-stream conditions, discussions with Stallings (private communication from Robert L. Stallings, Jr., NASA Langley Research Center, Hampton, Virginia, 1987) indicated the data in references 4 and 5 were very repeatable. The recent data reported by Dix (ref. 6) also showed the cavity static pressures to be unsteady at subsonic and transonic flow conditions. For the experimental data reported herein, each orifice was sampled 20 times over a 1.25-sec period; these data then were averaged to produce the results for one data point. Because the data were not repeatable, several data points were taken consecutively, while test conditions were held constant. Approximately 100 data samples were taken at each test condition to obtain a representative sampling of the data. The ratio of Boundary-layer thickness. boundary-layer thickness to cavity depth was shown to be an important parameter to match in the study of cavity flows (ref. 3). The scaled boundary-layer height was estimated to be approximately 0.8 in. at flight conditions. To obtain a boundary-layer thickness of 0.8 in. at the cavity leading edge would require approximately 5 ft of flat plate ahead of the cavity. To reduce the model weight because the plate was being made of a solid piece of aluminum, only 3 ft of plate forward of the cavity was used. An appropriate boundary-layer thickness was artificially generated by placing a heavy layer of No. 60 grit from 1 in. aft of the leading edge to 24 in. aft of the leading edge. The length of the band of grit was determined by specifying the length of the smooth surface that was required downstream of the roughened surface to allow the boundary layer to readjust. The length of the smooth surface needed to allow the boundary layer to recover was approximately 15 boundary-layer thicknesses (refs. 20 and 21). To determine the boundary-layer thickness, the cavity floor was moved flush with the plate surface, and the total pressure through the boundary layer was measured with a rake at a point 2 in. forward of the cavity leading edge. A drawing and photograph of the rake are shown in figures 8 and 9. A ± 15 psid ESP module, referenced to tunnel static, was used to measure the total pressures through the boundary layer; the measured pressure was accurate to ± 0.03 psi. A static pressure port also was located on the flat plate 2 in. forward of the cavity leading edge. Because the static pressure port was at the same position as the rake, the rake affected the static pressure measurement when this measurement was taken while the rake was in place. To prevent this interference, the static pressure measurement was obtained during later runs in which the same test conditions were used and the boundary-layer rake had been removed. Several methods were considered to determine the boundary-layer thickness. The disadvantages of most methods are that a curve must be faired through the boundary-layer velocity profile and that a consistent determination of the curve intersection with the freestream velocity must be made. The curve intersection is difficult to determine with any consistency because of the asymptotic nature of the velocity profile. In this test, the boundary layer was very thick and nearly equal to the height of the boundary-layer rake, thus causing much inconsistency in the estimation of the boundary-layer thickness. The method described in reference 22 was employed in order to provide an estimate for comparison purposes. In this method, the measured total pressure p_t was plotted against z, which is the measured distance of each total pressure tube above the flat plate. (An example of the data obtained in the test is shown in figure 10.) A straight line then was faired through the last several data points inside the edge of the boundary layer, as illustrated in figure 10. The boundary-layer thickness then is defined to be the value of z where the linearly extrapolated boundary-layer total pressure reaches free-stream total pressure. (This is shown on the plot as the point where the line drawn through the measured pressures in the boundary layer intersects with the free-stream total pressure value $p_{t\infty}$.) To determine if this method was reasonable, the boundarylayer thickness was estimated using the traditional definition of boundary-layer thickness; the edge of the boundary layer was defined to be the point where $U/U_{\infty} = 0.99$. The value of p_t at $U/U_{\infty} = 0.99$ was calculated assuming that an adiabatic and perfect flow existed and that the static pressure measured at the surface remained constant through the boundary layer. The calculated value of p_t is plotted as the solid symbol in figure 10 at the value of $z = \delta$ estimated previously. The total pressure estimated using the conventional definition falls on the measured total pressure curve, providing assurance that the boundary-layer thickness determined by the method in reference 22 is reasonable. The actual boundary-layer thickness is probably slightly thicker than the estimation of δ used herein. The method of reference 22 assumes that the boundary-layer pressure will increase linearly to free-stream total pressure whereas the pressure in the boundary layer actually increases asymptotically toward the free-stream value. The boundary-layer thicknesses determined using the method in reference 22 are tabulated in table III. This table shows that δ changes little when the Reynolds number is increased. The heavy layer of grit forward of the cavity caused the boundarylayer thickness to be relatively insensitive to changes in the Reynolds number. A majority of the runs were made with the 2-ft band of grit at the leading edge; however, in order to study the effect of a change in boundary-layer thickness, a few runs were made in the l/h = 11.7 configuration with transition fixed at the flat plate leading edge, i.e., instead of using a 2-ft band of grit. In order to fix transition, a strip of No. 60 grit was sparsely distributed over a width of 0.10 in. (approximately 1 in. aft of the leading edge) in accordance with the recommendations of reference 23. These runs were made at Mach numbers from 0.30 to 0.95 and at the lowest Reynolds number tested for each Mach number (table II). Because of wind tunnel time constraints, the boundary-layer thickness was not measured for this configuration. This was a relatively simple configuration (a flat plate with turbulent flow), so it was expected that an analytical model could provide an estimate of the boundarylayer thickness. The deep cavity (l/h = 4.4) was not tested in the transition strip configuration. Flow visualization. A schlieren flow-visualization system was set up to allow observation of the flow over the cavity region. No shock waves from the model leading edge were reflected from the tunnel wall into the cavity region at any Mach number tested. Test plans included flow visualization inside the cavity. Fifteen-denier monofilament fluorescent minitufts with a diameter = 0.0019 in. were cemented on the inside cavity walls. One side of the cavity was plexiglass to allow photographs to be taken of the tufts inside the cavity. The mini-tufts were to be photographed during each run; however, this method was not successful because the unsteadiness inside the cavity tore these mini-tufts from the cavity walls. Tabulated data. The pressure measurements, which were reduced to coefficient form, are presented in tables IV XI. These tables contain the exact tunnel test conditions as well as the measured pressures. The pressure data are presented as CPxxx, where xxx refers to the orifice number. (The locations of the orifices are presented in table I.) The measured pressure tabulated for each orifice is the average of the 100 individual data samples. #### Discussion of Results Three methods of calculating pressures are shown in figures 11–31. The first method compares individual data samples to demonstrate the variation in pressures over a 1.25-sec sampling period.
(This method is noted in the legends of figs. 11–13 and 31 by "individual data samples are plotted.") The second method compares data points in which each data point is the average of 20 samples obtained over a 1.25-sec sampling period. (This method is indicated by the word "point" in the legends of figs. 14 and 16.) The third method compares results among cavity configurations, Mach numbers, and Reynolds numbers; these data are presented as the average of all measurements taken at the specified test condition. (This method is noted in the legends of figs. 17–30 by "an average of 100 data samples is plotted.") #### Static Pressure Unsteadiness Figure 11 shows the variation in C_p along the cavity floor centerline for several individual samples taken during a 1.25-sec period. Each sample is an instantaneous, unaveraged record of the data. Samples were chosen to show the wide variation in instantaneous static pressure measurements. The plots show that a sizable change takes place in the magnitude and shape of the pressure distribution on the cavity floor over time. Figure 11 is representative of the deep-cavity data obtained at all Mach numbers tested for Reynolds numbers of 3.3×10^6 per ft or greater. As the Reynolds number decreases, the unsteadiness also decreases, as illustrated by comparing the data in figures 11 and 12. Figures 11 and 12 also show that the pressure distribution is relatively smooth with no discontinuities. Notice that at $x/l \approx 0.28$ in figure 11 and at $x/l \approx 0.45$ in figure 12, a node with all curves passing through approximately the same point exists. This node indicates the presence of a standing wave, which may result from the interaction of the compression waves inside the cavity. Compression waves are formed as the shear layer dips into the cavity and the external flow contacts the rear cavity wall. Reference 9 gives specific details for the method by which the compression waves are formed and interact. According to Heller and Bliss (ref. 9), the second modal frequency at which a cavity oscillates is usually the predominant mode. Less flow unsteadiness is seen for the shallow cavity than for the deep cavity (fig. 13). The increased steadiness of the flow in the shallow cavity is expected because there is no fluctuating shear layer as in a deep cavity. #### Data Repeatability The C_p distribution down the centerline of the model is displayed in figure 14 as if the cavity were laid out flat. The coordinate system is shown in figure 4. The first portion of the plot (x/l from -1.0 to 0) is the pressure distribution from the leading edge of the plate (x/l = -0.857) to the beginning of the cavity. The next segment of the plot (z/h from 0 to -1.0) shows the pressures measured on the forward wall of the cavity, beginning near the cavity opening and moving toward the cavity floor. The next segment of the plot (x/l from 0 to 1.0) is the cavity floor, and the segment of z/h from -1.0 to 0 is the rear wall of the cavity, moving from the cavity floor toward the opening. The last segment (x/l) from 1.0 to 1.4) is the data from the orifices on the plate downstream of the cavity. Figure 14 shows four data points taken at M_{∞} = 0.60 and $R_{\infty} = 3.5 \times 10^6$ for the deep-cavity configuration. Very slight differences exist in the averaged measurements toward the downstream end of the cavity floor, the aft wall, and for a short distance downstream of the cavity. The data on the model leading edge repeat very well, thus implying that the unsteadiness in the cavity flow is not due to tunnel flow instabilities. Notice also that in comparing the figure 14 data with those in figure 11, the mean data do not represent the instantaneous pressure distribution on the cavity floor. These findings are in agreement with the following statement made by Rossiter (ref. 1): "...the real flow is highly unsteady and...the (mean) flow patterns...do not necessarily correspond to features which could be observed in the flow at any instant of time." For further comparison, the total variation in the 100 individual, unaveraged measurements as compared to the average measurement for $M_{\infty}=0.60$ and $R_{\infty}=3.5\times10^6$ is shown in figure 15. These data show the importance of obtaining a large enough data sampling to define properly the cavity mean pressure distribution. A plot of the repeatability of the data points for the shallow cavity is shown in figure 16. In this figure, a representative pressure distribution with 20 samples of data averaged for a shallow-cavity configuration is provided at $M_{\infty}=0.60$ and $R_{\infty}=3.5\times10^6$; these are the same conditions used for the deep cavity. Figure 16 shows that the mean data for the shallow cavity can be considered repeatable, as was expected from the small variation in samples over time (fig. 13). To study the effects of such parameters as Mach and Reynolds numbers on cavity flow, data are presented (figs. 17–30) as the average of the 100 individual pressure samples obtained for a given orifice and test condition. #### Mach Number Effects Data for various Mach numbers at nearly constant Reynolds numbers are compared in figures 17 and 18. Figure 17 shows data for the deep-cavity configuration, and figure 18 shows the shallow-cavity configuration. As shown in figure 17, little difference exists between the deep-cavity pressure distributions at Mach numbers of 0.85 and 0.95. The C_p values for $M_{\infty}=0.6$ are slightly more negative on the cavity floor than at $M_{\infty}=0.85$ and 0.95. At $M_{\infty}=0.3$, the data show a much different distribution on the cavity floor. The pressure distributions in the aft-cavity region, including the floor and wall, are more negative at $M_{\infty} = 0.3$ than for the other Mach numbers. Although the Reynolds number at $M_{\infty} = 0.3$ is lower than the Reynolds numbers tested for the other Mach numbers plotted, this should not affect the mean distribution, as will be discussed in the section entitled "Reynolds Number Effects." Figure 18 shows the effect of Mach number on the measured static pressure distribution for the shallow-cavity configuration. The lower Mach numbers (0.3 and 0.6) show a slight plateau-pressure region at $x/l \approx 0.5$; this plateau pressure implies that the flow has impinged on the cavity floor and that the flow structure may be of the closed-cavity type at the lower Mach numbers. At a Mach number of 0.85, the C_p distribution shows no plateau through this region; the lack of a plateau is typical of transitional cavity flow. This flow trend also is seen at all Mach numbers above 0.85, although these data are not shown in figure 18. In figures 17 and 18, the data at $M_{\infty} = 0.3$ do not form a smooth curve. The variation in the data about the mean line may have resulted from the decision to size the transducers for the high-pressure ranges. The decision resulted in values of C_p which may be in error by as much as ± 0.02 ; the trends shown in figures 17 and 18 for $M_{\infty} = 0.3$ are valid, however. ### Reynolds Number Effects The Reynolds number effects were of interest to this test. Previous research indicated that δ/l is an important parameter in cavity flows (ref. 3). Generally, when the Reynolds number is varied, the thickness of the boundary layer is altered; however, the thick layer of grit at the leading edge of the model caused the boundary-layer thickness to change little with an increase in Reynolds number. This thick layer of grit allowed the Reynolds number to be varied independently of the boundary-layer thickness. Figures 19 and 20 show a comparison of Reynolds numbers at a constant Mach number for the deep and shallow cavities, respectively. These plots are for $M_{\infty} = 0.6$, but they are representative of what occurred at all Mach numbers. The variation in R_{∞} for this test was relatively small (approximately a factor of 3), so not much change was expected. As can be seen in the plots, very little change exists in the mean C_p distribution over the range of Reynolds numbers tested. As discussed in the section on static pressure unsteadiness, the unsteadiness of the flow was affected by even this small change in R_{∞} for the deep-cavity configuration; for $R_{\infty} > 3 \times 10^6$, the deep-cavity pressures showed large fluctuations with time. #### Effects of Boundary-Layer Thickness The shallow cavity was tested using two methods to develop the boundary layer. In the first method, the boundary layer was artificially thickened using a 2-ft band of grit downstream of the leading edge (fig. 4). In the second method, the boundary layer developed naturally after being tripped near the leading edge of the flat plate. These methods should generate different boundary-layer thicknesses, and the boundary layer that developed after being tripped at the leading edge should be thinner. Because of time constraints, the boundary-layer thickness was not measured when the leading-edge trip was used: however, with the relatively simple model configuration of a flat plate with a turbulent boundary layer, the one-seventh power law of Stratford and Beavers (ref. 24) was used to provide an estimate of the boundary-layer thickness. This boundary-layer thickness was computed to be approximately 0.60 in. $(\delta/l = 0.014)$ for $M_{\infty} = 0.95$ and $R_{\infty} = 1.8 \times 10^6$ (as compared to a 0.88-in, measured value for the artificially thickened configuration). The value of δ , estimated by the Stratford and Beavers method. was calculated at a point 2 in. forward of the cavity leading edge in order to compare it with the measured boundary-layer thicknesses. The calculation of the boundary-layer thickness that was generated with the leading-edge strip does not need to be exact. What is important for this comparison is that a difference in the boundary-layer thickness exists.
Figure 21 shows the sensitivity of the shallow-cavity pressure distribution to the boundary-layer thickness as the boundary layer enters the cavity. As can be seen, the effects are that the pressure distributions become slightly more positive in the aft region of the cavity and more negative downstream of the cavity when the boundary layer entering the cavity is thinner. #### Flow Symmetry To study the lateral symmetry of the flow inside the cavity, the C_p distributions on both sides of the centerline are compared; figure 7 shows the locations of the orifices. Figures 22 and 23 are representative of the data that were obtained for the deep cavity, and figures 24 and 25 represent the shallow-cavity configuration. (Recall that when the cavity is in the shallow configuration, fewer orifices are exposed to the flow.) These plots show that the flow is relatively symmetrical about the model centerline. The pressures measured on the sidewall also are nearly the same as those on the floor. For the deep-cavity configuration (figs. 22 and 23), the C_p on the sidewalls becomes slightly more negative for the orifices in the aft-cavity portion near the cavity opening, and the rear wall shows a positive shift in the level of C_p measured by the row of orifices nearest to the cavity opening in the region of the cavity centerline. This perturbation is probably due to the shear layer fluctuations on the rear face of the deep cavity. # Effects of Cavity Shape The shallow cavity was tested in several configurations. Changes were made to the forward- and aft-cavity shapes (fig. 5), and a fence was added (fig. 6). Figures 26 and 27 are representative of the results obtained. The addition of blocks to the forward portion of the shallow cavity has minimal impact on the static pressure distribution, except on the rear wall where a more positive pressure distribution resulted (fig. 26). The rear block was not instrumented; therefore, no static pressure measurements were taken in the aft-cavity portion for this configuration. The addition of a fence upstream of the shallow cavity has a significant impact on the static pressures measured on the model (fig. 27). At lower Mach numbers, the pressure distribution is altered to be similar to a transitional cavity flow (fig. 27(a)). For Mach numbers >0.85, the measured pressures are reduced considerably in the aft portion of the cavity; this reduction causes the distribution in the aft end of the cavity to be more similar to an open-cavity distribution (fig. 27(b)). The change in the mean flow to more of an open-cavity flow causes a store to have less difficulty separating from the cavity. The effect of the fence is to impart increased momentum to the shear layer as the Mach number increases (fig. 28). The data are not shown, but at $M_{\infty} \leq 0.60$, the fence has a limited effect on the flow. As the Mach number increases, the data show very little separation downstream of the cavity; however, it is not clear if this is due to the fence or to Mach number effects. The shallow cavity with front blocks was tested with both the transition strip on the model and with the 2-ft band of grit. In figure 29, the effect of a change in the boundary-layer thickness is not altered when front blocks are placed within the cavity. The distribution in the aft region of the cavity becomes more positive as the boundary-layer thickness decreases (fig. 21). The deep-cavity configuration was tested with blocks in the forward portion of the cavity. The effect of this shape change on the static pressure distribution is minimal (fig. 30). The blocks were placed in the cavity in an attempt to affect the pressure wave propagation within the cavity and thereby impact the noise level of the open cavity. Because the dynamic data were in error, the effect of the block on the unsteadiness of the cavity was studied by comparing the individual static pressure measurements. Several individual data samples are shown in figure 31; these samples were taken over a 1.25-sec period (see the discussion for fig. 11). A comparison of figures 11 and 31 shows that the unsteadiness in the static pressure measurement is not affected by the change in cavity shape. The location of the nodal point is affected however; the node moves farther downstream. For the deep-cavity configuration with front blocks, the node is at $x/l \approx 0.5$ as compared to $x/l \approx 0.275$ for an empty cavity. The change in the cavity shape may affect the harmonics of the cavity, but the shape change does not appear to effect the unsteadiness of the flow (fig. 31). # **Concluding Remarks** To aid in the understanding of the flow in cavities at transonic speeds, an experimental study was conducted in the David Taylor Research Center 7by 10-Foot Transonic Wind Tunnel. For this investigation, cavities with length-to-height (l/h) ratios of 4.4 and 11.7 were tested at Mach numbers from 0.30 to 0.95 and at Reynolds numbers from 1.0×10^6 to 4.2×10^6 per foot. Static pressures were measured on the model, and the boundary-layer thickness was measured 2 in. upstream of the cavity leading edge. For most of the test, the boundary layer was artificially thickened, thus causing the boundary-layer thickness to vary little with Reynolds number. With the boundary-layer thickness held constant, Reynolds number had no effect on the pressure distribution for the range of Reynolds numbers tested. For the shallow cavity (l/h = 11.7), runs also were made without artificially thickening the boundary layer. The comparison between artificially thickened and nonthickened boundary layers showed the pressure distribution in the aft-cavity portion to be sensitive to boundary-layer thickness entering the cavity. The measured pressures in the aft-cavity portion were greater than for the thinner boundary-layer runs. For the deep-cavity configuration (l/h = 4.4), at Reynolds numbers greater than 3.0×10^6 per foot, the individual samples on the cavity floor fluctuated significantly over the 1-sec sampling period. data showed much less unsteadiness for the deep cavity at lower Reynolds numbers and for all conditions tested with the shallow cavity. Although mean static pressure distributions have been used in past deep-cavity analyses with transonic free-stream conditions, the data presented in this report indicate that averaged data may not be adequate when determining cavity loads or cavity aerodynamics. NASA Langley Research Center Hampton, VA 23665-5225 July 19, 1990 #### References - Rossiter, J. E.: Wind-Tunnel Experiment on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds. R. & M. No. 3438, British Aeronautical Research Council, Oct. 1964. - Kaufman, Louis G., II; Maciulaitis, Algirdas; and Clark, Rodney L.: Mach 0.6 to 3.0 Flows Over Rectangular Cavities. AFWAL-TR-82-3112, U.S. Air Force, May 1983. (Available from DTIC as AD A134 579.) - Charwat, A. F.: Roos, J. N.; Dewey, F. C., Jr.; and Hitz, J. A.: An Investigation of Separated Flows Part I: The Pressure Field. J. Aeronaut. Sci., vol. 28, no. 6, June 1961, pp. 457–470. - Stallings, Robert L., Jr.; and Wilcox, Floyd J., Jr.: Experimental Cavity Pressure Distributions at Supersonic Speeds. NASA TP-2683, 1987. - Blair, A. B., Jr.; and Stallings, Robert L., Jr.: Supersonic Axial-Force Characteristics of a Rectangular-Box Cavity With Various Length-to-Depth Ratios in a Flat Plate. NASA TM-87659, 1986. - Dix, Richard E.: On Simulation Techniques for the Separation of Stores From Internal Installations. SAE Tech. Paper Ser. 871799, Oct. 1987. - Franke, M. E.; and Carr, D. L.: Effect of Geometry on Open Cavity Flow-Induced Pressure Oscillations. AIAA Paper No. 75-492, Mar. 1975. - Shaw, L. L.; Bartel, H.; and McAvoy, J.: Prediction and Suppression of the Acoustic Environment in Large Enclosures With a Small Opening Exposed to Aerodynamic Flow. AIAA-82-0121, Jan. 1982. - Heller, Hanno H.; and Bliss, Donald B.: Aerodynamically Induced Pressure Oscillations in Cavities Physical Mechanisms and Suppression Concepts. Tech. Rep. AFFDL-TR-74-133, U.S. Air Force, Feb. 1975. - Baysal O.; Srinivasan, S.; and Stallings, L., Jr.: Unsteady Viscous Calculations of Supersonic Flows Past Deep and Shallow Three-Dimensional Cavities. AIAA-88-0101, Jan. 1988. - 11. Catalano, George D.: Turbulent Flow Over an Embedded Rectangular Cavity. AFATL-TR-86-73, Feb. 1987. (Available from DTIC as AD A177 928). - Om, Deepak: Navier-Stokes Simulation for Flow Past an Open Cavity. AIAA-86-2628, Oct. 1986. - Baysal, O.; and Stallings, R. L., Jr.: Computational and Experimental Investigation of Cavity Flowfields. AIAA-87-0114, Jan. 1987. - Rizzeta, D. P.: Numerical Simulation of Supersonic Flow Over a Three-Dimensional Cavity. AIAA-87-1288, June 1987. - Suhs, N. E.: Computations of Three-Dimensional Cavity Flow at Subsonic and Supersonic Mach Numbers. AIAA-87-1208, June 1987. - Baysal, Oktay; and Srinivasan, Shivakumar: Navier-Stokes Calculations of Transonic Flows Past Cavities. NASA CR-4210, 1989. - Srinivasan, S.; Baysal, O.; and Plentovich, E. B.: Navier-Stokes Calculations of Transonic Flows Past Open and Transitional Cavities. Advances and Applications in Computational Fluid Dynamics, FED-Vol. 66, O. Baysal, ed., American Soc. of Mechanical Engineers, 1988, pp. 169-179. - 18. Stallings, Robert L., Jr.: Store Separation From Cavities at Supersonic Flight Speeds. J. Spacecr. ℰ Rockets, vol. 20, no. 2, Mar.-Apr. 1983, pp. 129-132. - ASED Staff: Transonic Wind-Tunnel Facility at the Naval Ship Research and Development Center. Rep. ASED 332, U.S. Navy, June 1975. - Young, A. D.; and Paterson, J. H.: Aircraft Excrescence Drag. AGARD-AG-264, July 1981. - Antonia, R. A.; and Luxton, R. E.: The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness. Part 2. Rough-to-Smooth. J. Fluid Mech., vol. 53, pt. 4, June 27, 1972, pp. 737-757. - Adcock, Jerry B.; Peterson, John B., Jr.; and McRee, Donald I.:
Experimental Investigation of a Turbulent Boundary Layer at Mach 6, High Reynolds Numbers, and Zero Heat Transfer. NASA TN D-2907, 1965. - Braslow, Albert L.; Hicks, Raymond M.; and Harris, Roy V., Jr.: Use of Grit-Type Boundary-Layer-Transition Trips on Wind-Tunnel Models. NASA TN D-3579, 1966. - Stratford, B. S.; and Beavers, G. S.: The Calculation of the Compressible Turbulent Boundary Layer in an Arbitrary Pressure Gradient A Correlation of Certain Previous Methods. R. & M. No. 3207, British Aeronautical Research Council, Sept. 1957. Table I. Static Pressure Orifice Locations [See figure 4 for coordinate origin] | - T | | | | Orifice location | Orifice | | | | Orifice location | |----------|------------------|------------------------------|--------------------|--------------------------|------------|------------|-------------|-------------|-------------------------------| | Orifice | | a, in | z, in. | on model | number | x, in. | y, in. | z, in. | on model | | number | x, in. | $\frac{y, \text{ in.}}{0.0}$ | $\frac{2}{-0.500}$ | Plate, leading edge | 56 | 0.0 | 2.750 | -4.8 | Forward wall of cavity | | 1 | -36.0 | 0.0 | -0.300 | Plate, forward of cavity | 57 | 0.0 | 4.125 | -4.8 | Forward wall of cavity | | 2 | $-35.0 \\ -34.0$ | 0.0 | 127 | | 65 | 3.0 | 4.8 | -1.2 | Right-hand sidewall of cavity | | 3 | -34.0
-33.0 | 0.0 | 067 | | 66 | 6.0 | 4.8 | -1.2 | | | 4 | -33.0
-32.0 | 0.0 | 029 | | 67 | 12.0 | 4.8 | -1.2 | | | 5
6 | -32.0 -31.0 | 0.0 | 007 | | 68 | 18.0 | 4.8 | -1.2 | | | 7 | -30.0 | 0.0 | 0.0 | | 69 | 3.0 | 4.8 | -4.8 | | | 8 | -29.0 | 0.0 | 0.0 | | 70 | 6.0 | 4.8 | -4.8 | | | 9 | -28.0 | 0.0 | 0.0 | | 71 | 12.0 | 4.8 | -4.8 | | | 10 | -27.0 | 0.0 | 0.0 | | 72 | 18.0 | 4.8 | -4.8 | * 6.1 1 11 11 of anxiety | | 11 | -26.0 | 0.0 | 0.0 | | 80 | 2.0 | -4.8 | -2.4 | Left-hand sidewall of cavity | | 12 | -25.0 | 0.0 | 0.0 | | 82 | 2.0 | -4.8 | -6.0 | | | 13 | -24.0 | 0.0 | 0.0 | | 83 | 2.0 | -4.8 | -7.2 | | | 14 | -22.0 | 0.0 | 0.0 | | 84 | 6.0 | -4.8 | -2.4 | | | 15 | -20.0 | 0.0 | 0.0 | | 85 | 6.0 | -4.8 | -3.6 | | | 16 | -18.0 | 0.0 | 0.0 | | 86 | 6.0 | -4.8 | -6.0 | | | 17 | -16.0 | 0.0 | 0.0 | | 87 | 6.0 | -4.8 | -7.2 | | | 18 | -14.0 | 0.0 | 0.0 | | 88 | 2.0 | -4.8 | -4.8 | | | 19 | -12.0 | 0.0 | 0.0 | | 89 | 4.0 | -4.8 | -4.8 | | | 20 | -10.0 | 0.0 | 0.0 | | 90 | 6.0 | -4.8 | -4.8 | | | 21 | -8.0 | 0.0 | 0.0 | | 91 | 8.0 | -4.8 | -4.8 | Left-hand sidewall of cavity | | 33 | -6.0 | 0.0 | 0.0 | | 97 | 1.0 | -4.8 | -1.2 -1.2 | Lett-mand side and or covery | | 34 | -4.0 | 0.0 | 0.0 | | 98 | 2.0 | -4.8 | -1.2 | | | 35 | -2.0 | 0.0 | 0.0 | 1 | 99 | 3.0 | -4.8 | -1.2 -1.2 | | | 36 | -3.0 | -7.8 | 0.0 | Plate, left of cavity | 100 | 4.0 | -4.8 -4.8 | -1.2 | | | 37 | 3.0 | -7.8 | 0.0 | | 101 | 5.0
6.0 | -4.8 | -1.2 | | | 38 | 9.0 | -7.8 | 0.0 | | 102 | 7.0 | -4.8 | -1.2 | | | 39 | 15.0 | -7.8 | 0.0 | | 103 | 8.0 | -4.8 | -1.2 | | | 40 | 21.0 | -7.8 | 0.0 | + | 104 | 9.0 | -4.8 | -1.2 | | | 41 | -3.0 | 7.8 | 0.0 | Plate, right of cavity | 105
106 | 10.0 | -4.8 | -1.2 | | | 42 | 10.0 | 7.8 | 0.0 | | 100 | 11.0 | -4.8 | -1.2 | | | 43 | 21.0 | 7.8 | 0.0 | ↓ 1) fiter | 107 | 12.0 | -4.8 | -1.2 | | | 44 | 0.0 | -4.125 | L . | Forward wall of cavity | 109 | 14.0 | -4.8 | -1.2 | | | 45 | 0.0 | -2.750 | 1 | | 110 | 16.0 | -4.8 | -1.2 | | | 46 | 0.0 | l l | 1 | | 111 | 18.0 | -4.8 | -1.2 | | | 47 | 0.0 | | -1.2 | | 112 | 20.0 | -4.8 | -1.2 | | | 48 | 0.0 | l l | | | 113 | 22.0 | -4.8 | -1.2 | | | 49 | 0.0 | | | | 114 | 24.0 | -4.8 | -1.2 | | | 50 | 0.0 | | 1 | | 115 | 26.0 | 1 | -1.2 | | | 51 | 0.0 | | 1 | | 116 | 10.0 | 1 | -4.8 | | | 52 | 0.0 | 1 | 1 | | 117 | 12.0 | -4.8 | -4.8 | | | 53 | 0.0 | ĺ | -4.8 | | 118 | 15.0 | -4.8 | -4.8 | | | 54
55 | 0.0 | | | | 121 | 24.0 | -4.8 | -4.8 | <u> </u> | Table I. Continued | Orifice | | | | Orifice location | 0e | | | | | |---------|-------|--------|-------------------|---------------------------------|------------|------|-------------|----------|------------------------------| | number | x, in | y, in | z, in. | on model | Orifice | | | | Orifice location | | 123 | 18.0 | | | Left-hand sidewall of cavity | number | + | | z, in. | on model | | 124 | 18.0 | | | 2x it tially sidewall of cavity | 172
173 | 40.0 | | Variable | Cavity floor | | 125 | 18.0 | i | | | 173 | 41.0 | 1 | Variable | | | 126 | 18.0 | -4.8 | ľ | | 175 | 22.0 | | Variable | | | 129 | 1.0 | 0.0 | | Cavity floor | 11 | 24.0 | | Variable | | | 130 | 2.0 | 0.0 | 1 | Cuvity noor | 176 | 26.0 | ĺ | Variable | | | 131 | 3.0 | 0.0 | | | 177 | 28.0 | 2.4 | Variable | | | 132 | 4.0 | 0.0 | | | 178 | 30.0 | 2.4 | Variable | | | 133 | 5.0 | 0.0 | 1 | | 179 | 32.0 | 2.4 | Variable | | | 134 | 6.0 | 0.0 | I | | 180 | 34.0 | 2.4 | Variable | | | 135 | 8.0 | 0.0 | Variable | | 181 | 36.0 | 2.4 | Variable | | | 136 | 10.0 | 0.0 | Variable | | 182 | 37.0 | 2.4 | Variable | | | 137 | 12.0 | 0.0 | Variable | | 183 | 38.0 | 2.4 | Variable | | | 138 | 14.0 | 0.0 | Variable | | 184 | 39.0 | 2.4 | Variable | | | 139 | 16.0 | 0.0 | Variable | | 185 | 40.0 | 2.4 | Variable | | | 140 | 18.0 | 0.0 | Variable | | 186 | 41.0 | 2.4 | Variable | | | 141 | 20.0 | 0.0 | Variable | | 188 | 30.0 | -2.4 | Variable | | | 142 | 1.0 | 2.4 | Variable | | 189 | 36.0 | -2.4 | Variable | | | 143 | 2.0 | 2.4 | Variable | | 190 | 38.0 | -2.4 | Variable | | | 144 | 3.0 | 2.4 | Variable | | 191 | 40.0 | -2.4 | Variable | ↓ | | 145 | 4.0 | 2.4 | Variable | | 193 | 28.0 | -4.8 | -1.2 | Left-hand sidewall of cavity | | 146 | 5.0 | 2.4 | Variable | | 194 | 30.0 | -4.8 | -1.2 | | | 147 | 6.0 | 2.4 | Variable | | 195 | 31.0 | -4.8 | -1.2 | | | 148 | 8.0 | 2.4 | Variable | | 196 | 32.0 | -4.8 | -1.2 | | | 149 | 10.0 | 2.4 | Variable | | 197 | 33.0 | - 4.8 | -1.2 | | | 150 | 12.0 | 2.4 | Variable | | 198 | 34.0 | -4.8 | -1.2 | | | 151 | 14.0 | 2.4 | Variable | | 199 | 35.0 | -4.8 | -1.2 | | | 152 | 16.0 | 2.4 | Variable | | 200 | 36.0 | -4.8 | -1.2 | | | 153 | 18.0 | 2.4 | Variable | | 201 | 37.0 | -4.8 | -1.2 | | | 154 | 20.0 | 2.4 | Variable | | 202 | 38.0 | -4.8 | -1.2 | | | 155 | 2.0 | 2.4 | Variable | | 203 | 39.0 | -4.8 | -1.2 | | | 156 | 4.0 | - 2.4 | Variable | | 204 | 40.0 | -4.8 | -1.2 | | | 157 | 6.0 | - 2.4 | Variable | | 205 | 41.0 | -4.8 | -1.2 | | | 158 | 12.0 | - 2.4 | Variable | | 206 | 30.0 | -4.8 | -4.8 | | | 159 | 18.0 | -2.4 | Variable | | 207 | 32.0 | -4.8 | -4.8 | | | 161 | 22.0 | 0.0 | Variable | | 208 | 34.0 | -4.8 | -4.8 | | | 162 | 24.0 | 0.0 | Variable | | 209 | 36.0 | -4.8 | -4.8 | | | 163 | 26.0 | 0.0 | Variable | | 210 | 38.0 | -4.8 | -4.8 | | | i | 28.0 | 0.0 | Variable | | 211 | 40.0 | -4.8 | -4.8 | | | 1 | 30.0 | 0.0 | Variable | | 212 | 30.0 | -4.8 | -2.4 | | | | 32.0 | 0.0 | Variable Variable | | 213 | 30.0 | -4.8 | -3.6 | | | | 34.0 | 0.0 | Variable | | 214 | 30.0 | -4.8 | -6.0 | | | - 1 | 36.0 | 0.0 | Variable Variable | | 215 | 30.0 | -4.8 | -7.2 | | | | 37.0 | 0.0 | Variable Variable | | 216 | 36.0 | -4.8 | -2.4 | | | | 38.0 | 0.0 | Variable Variable | | 217 | 36.0 | -4.8 | -3.6 | | | - 1 | 39.0 | 0.0 | | | 218 | 36.0 | -4.8 | -6.0 | | | | 05.0 | 0.0 | Variable | | 219 | 36.0 | -4.8 | -7.2 | 1 | Table I. Concluded | 0.10 | | | | Orifice location | Orifice | | | | Orifice location | |---------|--------------|--------------|-------------------------------|---|--|--------|--------|--------|------------------------| | Orifice | | (| ~ ;,, | on model | number | x, in. | y, in. | z, in. | on model | | number | x, in. | y, in. | $\frac{z, \text{ in.}}{-2.4}$ | Left-hand sidewall of cavity | 271 | 43.0 | -7.8 | 0.0 | Plate, left of cavity | | 220 | 40.0 | -4.8
-4.8 | -3.6 | Left-hand side wan or currey | 272 | 45.0 | -7.8 | 0.0 | Plate, left of cavity | | 221 | 40.0 | -4.8
-4.8 | -6.0 | | 273 | 32.0 | 7.8 | 0.0 | Plate, right of cavity | | 222 | 40.0
40.0 | -4.8 | -7.2 | | 274 | 45.0 | 7.8 | 0.0 | Plate,
right of cavity | | 223 | | 4.0 | -3.6 | Aft wall of cavity | 275 | 42.0 | 4.0 | -1.2 | Aft wall of cavity | | 225 | 42.0
42.0 | 3.0 | -3.6 | I I | 276 | 42.0 | 3.0 | - 1.2 | | | 226 | | 2.0 | -3.6 | | 277 | 42.0 | 2.0 | -1.2 | | | 227 | 42.0 | | -3.6 | | 278 | 42.0 | 1.0 | -1.2 | | | 228 | 42.0 | 1.0 | -3.6 | İ | 279 | 42.0 | 0.0 | -1.2 | | | 229 | 42.0 | 0.0 | -3.6 | | 280 | 42.0 | -1.0 | -1.2 | | | 230 | 42.0 | -1.0 | -3.6 | | 281 | 42.0 | 2.0 | -1.2 | | | 231 | 42.0 | -2.0 | | | 282 | 42.0 | -3.0 | -1.2 | | | 232 | 42.0 | -3.0 | -3.6 -3.6 | | 283 | 42.0 | -4.0 | -1.2 | | | 233 | 42.0 | -4.0 | | | 284 | 42.0 | 0.0 | -2.4 | \ | | 234 | 42.0 | 0.0 | -5.4 | | | 12 | | | | | 235 | 42.0 | 4.0 | -7.2 | | | | | | | | 236 | 42.0 | 3.0 | -7.2 | | | | | | | | 237 | 42.0 | 2.0 | -7.2 | | | | | | 5 | | 238 | 42.0 | 1.0 | -7.2 | | | | | | | | 239 | 42.0 | 0.0 | -7.2 | | | | | | | | 240 | 42.0 | -1.0 | -7.2 | | | | | | | | 241 | 42.0 | -2.0 | -7.2 | | | | ĺ | | | | 242 | 42.0 | -3.0 | -7.2 | | | | | | | | 243 | 42.0 | -4.0 | -7.2 | | | | | | | | 244 | 42.0 | 0.0 | -8.4 | Di la | | | | | | | 245 | 24.0 | 4.8 | -1.2 | Right-hand sidewall of cavity | | | | | | | 246 | 30.0 | 4.8 | -1.2 | | | | | | | | 247 | 36.0 | 4.8 | -1.2 | | | | | | | | 248 | 39.0 | 4.8 | -1.2 | | | | | | | | 249 | 24.0 | 4.8 | -4.8 | | | | | | | | 250 | 30.0 | 4.8 | -4.8 | | | | | | | | 251 | 36.0 | 4.8 | -4.8 | | | | | | | | 252 | 39.0 | 4.8 | -4.8 | ↓
Plate, aft of cavity | | | | | | | 257 | 44.0 | 0.0 | 0.0 | r rate, are or cavity | | | | | | | 258 | 46.0 | 0.0 | 0.0 | | | | | | | | 259 | 48.0 | 0.0 | 0.0 | | | | | | | | 260 | 50.0 | 0.0 | 0.0 | | | | | | | | 261 | 52.0 | 0.0 | 0.0 | | | | | | | | 262 | 54.0 | 0.0
-7.8 | 0.0 | Plate, left of cavity | and the same of th | | | | | | 263 | 27.0 | -7.8 | 0.0 | Trace, felt on cavity | | | | | | | 264 | 29.0 | -7.8
-7.8 | 0.0 | | | | | | | | 265 | 31.0 | -7.8
-7.8 | 0.0 | | | | | | | | 266 | 33.0 | -7.8
-7.8 | 0.0 | | | | | | | | 267 | 35.0 | l | 0.0 | | | | | | | | 268 | 37.0 | -7.8 | 0.0 | | | | | | | | 269 | 39.0 | -7.8 | I. | | | | | | | | 270 | 41.0 | -7.8 | 0.0 | <u> </u> | 11 | | | | | Table II. Nominal Test Conditions | Mach | Reynolds number, | | | | |--------|---------------------|--------------------|---------------------|-------------------------------------| | number | per ft | q_{∞} , psf | $p_{t\infty}$, psf | $T_{t\infty}, {}^{\circ}\mathrm{F}$ | | 0.30 | 1.0×10^{6} | 70.1 | 1201.5 | 112.0 | | .60 | 1.6×10^{6} | 202.4 | 1023.1 | 91.3 | | .60 | 3.5×10^{6} | 410.9 | 2085.3 | 85.4 | | .80 | 1.5×10^{6} | 238.5 | 818.4 | 105.4 | | .80 | 3.3×10^{6} | 529.7 | 1806.2 | 108.3 | | .80 | 3.9×10^{6} | 619.6 | 2113.6 | 106.7 | | .85 | 1.6×10^{6} | 278.7 | 893.9 | 120.2 | | .85 | 3.3×10^{6} | 550.7 | 1766.9 | 111.3 | | .85 | 4.0×10^{6} | 666.9 | 2116.5 | 101.2 | | .90 | 1.6×10^{6} | 287.7 | 865.3 | 116.2 | | .90 | 1.9×10^{6} | 317.3 | 951.5 | 82.5 | | .90 | 3.3×10^{6} | 549.4 | 1645.6 | 93.7 | | .95 | 1.7×10^{6} | 322.6 | 914.0 | 121.1 | Table III. Measured Boundary-Layer Thickness | Mach | Reynolds number, | | |--------|---------------------|----------------| | number | per ft | δ , in. | | 0.30 | 1.0×10^{6} | Not measured | | .60 | 1.6×10^{6} | 0.80 | | .60 | 3.5×10^{6} | .77 | | .80 | 1.5×10^{6} | .82 | | .80 | 3.3×10^{6} | .86 | | .80 | 3.9×10^{6} | .85 | | .85 | 1.6×10^{6} | .84 | | .85 | 3.3×10^{6} | .88 | | .85 | 4.0×10^{6} | .88 | | .90 | 1.6×10^{6} | .85 | | .90 | 1.9×10^{6} | .87 | | .90 | 3.3×10^{6} | .90 | | .95 | 1.7×10^{6} | .88 | Table IV. Pressure Coefficients for l/h=4.4 Cavity | CP10 | -0.0620
-0.0597
-0.0551
-0.0568
-0.0588
-0.0489
-0.0457
-0.0459
-0.0342
-0.0306
-0.0295
-0.0295 | CP37 | -0.0384
-0.0227
-0.0289
-0.0032
-0.0024
0.0045
0.0045
0.0073
0.0135
0.0188
0.0164 | |-----------------------------|---|------|--| | CP9 | -0.1042
-0.0836
-0.0777
-0.0652
-0.0650
-0.0686
-0.0628
-0.0628
-0.0628
-0.0628
-0.0628
-0.0628
-0.0628 | CP36 | -0.0087
-0.0122
-0.0006
-0.0241
-0.0125
-0.0125
-0.0106
-0.0100
-0.0100
-0.0100
-0.0004
0.0075
-0.0068 | | CP8 | -0.0711
-0.0776
-0.0549
-0.0752
-0.0868
-0.0817
-0.0793
-0.0793
-0.0793
-0.0793
-0.0793 | CP35 | -0.0133
-0.0053
0.0099
-0.0040
0.0071
0.0028
0.0077
0.0077
0.0140
0.0199
0.0119 | | CP7 | -0.1644
-0.1465
-0.1535
-0.1535
-0.1556
-0.1319
-0.1347
-0.1473
-0.1452
-0.1524
-0.1524
-0.1452
-0.1524 | CP34 | -0.0032
-0.0045
-0.0017
-0.0118
-0.0058
-0.0034
-0.0034
-0.0019
-0.0013
-0.0134
-0.0135
-0.0135
-0.0135
-0.0135
-0.0135
-0.0136 | | CP6 | -0.1599
-0.1725
-0.1578
-0.1651
-0.1925
-0.2002
-0.2010
-0.2104
-0.2104
-0.2103 | CP33 | -0.0489
-0.0240
-0.0120
-0.0076
-0.0005
-0.0006
-0.0041
0.0014
0.0010
0.0010
0.0016
0.00066 | | CP5 | -0.2213
-0.2187
-0.2013
-0.1961
-0.2549
-0.2357
-0.2535
-0.2539
-0.3560
-0.3560 | CP21 | -0.0683
-0.0350
-0.0561
-0.0076
-0.0149
-0.0003
-0.0009
0.00053
-0.0110
0.0102 | | CP4 | -0.2271
-0.2397
-0.2417
-0.2136
-0.2593
-0.2603
-0.2893
-0.2876
-0.4125
-0.4125 | CP20 | -0.0025
-0.0067
-0.0153
-0.0153
-0.0046
-0.0073
-0.0006
-0.0010
-0.0010
-0.0010
-0.0010 | | CP3 | -0.2834
-0.3009
-0.2959
-0.2964
-0.3698
-0.3695
-0.4022
-0.4453
-0.4570
-0.4570
-0.4570 | CP19 | -0.0590
-0.0352
-0.0294
-0.0204
-0.0145
-0.0132
-0.0131
-0.0144
-0.0108
-0.0096 | | CP2 | -0.2614
-0.2595
-0.2595
-0.3467
-0.3641
-0.3992
-0.2833
-0.2736
-0.2193
-0.2076
-0.2193 | CP18 | -0.0227
-0.0218
-0.0207
-0.0198
-0.0139
-0.0139
-0.0130
-0.0130
-0.0089
-0.0089
-0.0089 | | CP1 | 0.8456
1.0080
0.9300
0.9873
1.1214
1.1234
1.1388
1.1604
1.1585
1.2076
1.2091 | CP17 | -0.0838
-0.0544
-0.0471
-0.0295
-0.0238
-0.0386
-0.0310
-0.0210
-0.0222
-0.0222 | | $T_{t\infty}$ | 87.0
100.6
73.4
74.4
105.8
109.6
110.9
116.9
82.5
100.2 | CP16 | -0.0663
-0.0538
-0.0590
-0.0492
-0.0398
-0.0338
-0.0338
-0.0338
-0.0338
-0.0352
-0.0369 | | ∞b | 64.8
188.4
188.5
414.3
238.3
528.2
619.3
555.4
665.6
287.5
317.6 | CP15 | -0.0543
-0.0308
-0.0365
-0.0085
-0.0024
-0.0024
-0.0050
-0.0008
0.0014
0.0020
-0.0022
0.0020 | | <i>pto</i> | 1162.1
1004.0
961.1
2112.0
817.5
1811.5
2114.0
890.1
1767.8
2120.3
865.7
951.2
1677.5 | CP14 | 999999999 | | p_{∞} | 1095.9
799.2
755.2
1659.4
539.2
11194.6
1389.8
559.3
1105.6
1326.8
516.4
564.7
996.3 | CP13 | -0.0682
-0.0417
-0.0242
-0.0288
-0.0341
-0.0219
-0.0247
-0.0151
-0.0157
-0.0145
-0.0034
0.0034 | | $R_{\infty} \times 10^{-6}$ | 1.0
1.0
3.3
3.3
3.3
1.6
1.6
1.6
1.7 | CP12 | -0.0799
-0.0677
-0.0638
-0.0452
-0.0463
-0.0473
-0.0413
-0.0330
-0.0350
-0.0386
-0.0286 | | M | | CP11 | -0.1166
-0.0903
-0.0870
-0.0872
-0.0637
-0.0670
-0.0534
-0.0534
-0.0534
-0.0534
-0.0537
-0.0537
-0.0537
-0.0537
-0.0537 | | В. | 69.
68.
216.
8.
214.
214.
64.
118.
116.
17. | Run | 69.
68.
216.
8.
66.
214.
64.
118.
116.
116. | Table IV. Continued | CP53 | 0.0028
-0.0053
-0.0057
-0.0057
-0.0022
-0.0071
0.0011
0.0014
0.0020
0.0020 | CP84 | 0.0104
-0.0196
-0.0209
-0.0120
-0.0046
-0.0076
-0.0075
-0.0062
0.0058
-0.0058
-0.0058
-0.0062
0.0058 | |------
--|------|---| | CP52 | 0.0270
0.0080
0.0139
0.0069
0.0176
0.0110
0.0142
0.0115
0.0195
0.0195
0.0193
0.0193 | CP83 | 0.0026
-0.0043
0.0208
-0.0003
0.0071
0.0025
0.0027
0.0088
0.0081
0.0082
0.0082
0.0082
0.0082
0.0082
0.0082 | | CP51 | 0.0028
0.0021
0.0193
0.0056
0.0121
0.0072
0.0002
0.0097
0.0132
0.0261
0.0091
0.0132 | CP82 | 0.0159
-0.0004
-0.0115
0.0121
0.0139
0.0154
0.0151
0.0132
0.0220
0.0220 | | CP50 | $\begin{array}{c} 0.0392 \\ 0.0143 \\ 0.0170 \\ 0.0109 \\ 0.0237 \\ 0.0022 \\ 0.0022 \\ 0.0220 \\ 0.0184 \\ 0.0173 \\ 0.0265 \\ 0.0288 \\ 0.0155 \\ 0.0308 \\ \end{array}$ | CP80 | 0.0209
0.0037
0.0128
0.0047
0.0154
0.0073
0.0124
0.0135
0.0177
0.0177
0.0126
0.0238 | | CP49 | -0.0272
-0.0170
-0.0317
0.0110
0.0028
0.0116
0.0048
0.0139
0.0139
0.0143
0.0156
0.0058 | CP72 | -0.0284
-0.0365
-0.0274
-0.0277
-0.0159
-0.0179
-0.0193
-0.0108
-0.0047
-0.0078 | | CP48 | 0.0293
0.0061
0.0199
0.0011
0.0154
0.0052
0.0098
0.0085
0.0169
0.0261
0.0261 | CP71 | -0.0118
-0.0298
-0.0207
-0.0207
-0.0135
-0.0134
-0.0151
-0.0155
-0.0039 | | CP47 | $\begin{array}{c} -0.0059 \\ -0.0139 \\ -0.0300 \\ 0.0045 \\ 0.0071 \\ 0.0088 \\ 0.0163 \\ 0.0065 \\ 0.0163 \\ 0.0163 \\ 0.0163 \\ 0.0166 \\ 0.0126 \\ 0.0126 \\ 0.0126 \\ 0.0126 \\ \end{array}$ | CP70 | 0.0118
-0.0139
-0.0170
-0.0090
0.0002
-0.0004
-0.0004
-0.0009
0.0009
0.00068
0.00055 | | CP46 | $\begin{array}{c} 0.0130 \\ -0.0071 \\ -0.0311 \\ 0.0097 \\ 0.0128 \\ 0.0113 \\ 0.0148 \\ 0.0126 \\ 0.0240 \\ 0.0088 \\ 0.0181 \\ 0.0247 \\ \end{array}$ | CP69 | -0.0063
-0.0122
-0.0012
-0.0032
-0.0033
-0.0033
-0.0057
-0.0082
-0.0082
-0.0082
-0.0082
-0.0082
-0.0082
-0.0082 | | CP45 | 0.0025
-0.0031
-0.0030
0.0065
0.0103
0.0072
0.0123
0.0153
0.0163
0.0163 | CP68 | $\begin{array}{c} -0.0150 \\ -0.0473 \\ -0.0284 \\ -0.0291 \\ -0.0333 \\ -0.0345 \\ -0.0351 \\ -0.0351 \\ -0.0209 \\ -0.0214 \\ -0.0214 \\ -0.0317 \\ -0.0214 \\ \end{array}$ | | CP44 | $\begin{array}{c} 0.0293 \\ 0.0102 \\ 0.0102 \\ 0.00033 \\ 0.0207 \\ 0.0155 \\ 0.0117 \\ 0.0147 \\ 0.0152 \\ 0.0241 \\ 0.0241 \\ 0.0287 \\ \end{array}$ | CP67 | -0.0122
-0.0448
-0.0316
-0.0311
-0.0257
-0.0224
-0.0224
-0.0232
-0.0234
-0.0234
-0.0147 | | CP43 | -0.1035
-0.0341
-0.0284
-0.0159
-0.0175
-0.0191
-0.0103
-0.0009
0.0009
0.00085 | CP66 | 0.0003
-0.0300
-0.0401
-0.0165
-0.0106
-0.0059
-0.0063
-0.0063
-0.0063
-0.0063
-0.0063
-0.0063 | | CP42 | $\begin{array}{c} 0.0103 \\ -0.0008 \\ 0.0042 \\ 0.0009 \\ 0.0111 \\ 0.0070 \\ 0.0048 \\ 0.0108 \\ 0.0095 \\ 0.0156 \\ 0.0156 \\ 0.0156 \\ 0.0185 \\ 0.0185 \\ \end{array}$ | CP65 | -0.0199
-0.0198
-0.0098
-0.0019
-0.0018
0.0010
0.0028
0.0051
0.0051
0.0051
0.0051 | | CP41 | $\begin{array}{c} -0.0459 \\ -0.0182 \\ -0.0201 \\ -0.0021 \\ 0.0020 \\ 0.0029 \\ 0.0026 \\ 0.0055 \\ 0.0074 \\ 0.0100 \\ 0.0107 \\ 0$ | CP57 | -0.0052
-0.0027
0.00127
0.0045
0.0048
0.0047
0.0075
0.0064
0.0063
0.0183
0.0100 | | CP40 | -0.0886
-0.0335
-0.0261
-0.0267
-0.0150
-0.0155
-0.0083
-0.0068
-0.0068
-0.0002
0.0075
0.0055 | CP56 | 0.0251
0.0077
0.0276
0.0052
0.0169
0.0069
0.0093
0.0158
0.0257
0.0095 | | CP39 | -0.0383
-0.0228
-0.0082
-0.0081
-0.0091
-0.0091
-0.0030
-0.0035
-0.0035
-0.0035
-0.0035
-0.0035 | CP55 | 0.0000
-0.0099
-0.0048
0.0048
0.0000
0.0023
0.0060
0.0122
0.0062
0.0122 | | CP38 | 0.0068
-0.0046
0.0059
-0.0069
0.0072
0.0027
0.0081
0.0034
0.0115
0.0115 | CP54 | 0.0209
-0.0036
-0.0009
-0.0022
0.0087
0.0061
0.0074
0.0074
0.0077
0.0150
0.0177 | | Run | 69.
68.
216.
8.
66.
214.
64.
118.
118.
116.
116. | Run | 69.
68 216 8 218.
214 64. 118.
15. 67. | Table IV. Continued | | | | 510044500022911 | |-------|--|--------|---| | CP105 | -0.0256
-0.0407
-0.0356
-0.0285
-0.0223
-0.0251
-0.0230
-0.0188
-0.0126
-0.0148
-0.0132
-0.0132 | CP124 | -0.0276
-0.0301
-0.0280
-0.0280
-0.0134
-0.0144
-0.025
-0.0189
-0.0182
-0.0182
-0.0182
-0.0182
-0.0072 | | CP104 | 0.0139
-0.0251
-0.0251
-0.0133
-0.0110
-0.0198
-0.0130
-0.0116
-0.0051
-0.0057
0.0010 | CP123 | -0.0426
-0.0414
-0.0168
-0.0320
-0.0255
-0.0255
-0.0301
-0.038
-0.0284
-0.0284
-0.0112
-0.0106 | | CP103 | -0.0156
-0.0363
-0.0393
-0.0129
-0.0165
-0.0162
-0.0163
-0.0163
-0.0025
-0.0013
-0.0013 | CP121 |
-0.1829
-0.0349
0.0012
-0.0250
-0.0165
-0.0087
-0.0055
-0.0017
0.0025
0.0010 | | CP102 | 0.0207 0.0194 0.0194 0.0198 0.0048 0.0065 - 0.0065 - 0.0064 - 0.0064 - 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 | CP118 | 0.0071
-0.0263
-0.0192
-0.0233
-0.0117
-0.0168
-0.020
-0.020
-0.0197
-0.0095
-0.0095 | | CP101 | -0.0042
-0.0253
-0.0253
-0.0091
-0.0099
-0.0054
-0.0037
-0.0085
-0.0085
-0.0085
-0.0085
-0.0085
-0.0085
-0.0085 | CP117 | -0.0188
-0.0307
-0.0241
-0.0206
-0.0194
-0.0185
-0.0196
-0.0128
-0.0128
-0.0132
-0.0132 | | CP100 | 0.0068 - 0.0141 - 0.0335 - 0.0053 - 0.0038 - 0.0038 - 0.0037 - 0.0037 - 0.0037 - 0.0039 - 0.0011 - 0.0155 - 0.0198 | CP116 | -0.0111
-0.0241
-0.0538
-0.0108
-0.0067
-0.0063
-0.0128
-0.0138
-0.0138
-0.0138
-0.0036 | | CP99 | 0.0049
-0.0099
-0.00115
-0.0043
-0.0031
-0.0038
-0.0039
0.0055
0.0069
0.0110
0.0161 | CP115 | -0.2368
-0.0601
-0.0516
-0.0375
-0.0244
-0.0213
-0.0229
-0.0137
-0.023
-0.0020
0.0009
-0.0035 | | CP98 | 0.0303
0.0089
0.0170
0.0170
0.0132
0.0130
0.0157
0.0133
0.0133
0.0133
0.0218
0.0218 | CP114 | -0.1649
-0.0482
-0.0461
-0.0383
-0.0313
-0.0199
-0.0167
-0.0168
-0.0168
-0.0168
-0.0002
-0.0002 | | CP97 | 0.0104
0.0055
0.0008
0.0090
0.0118
0.0122
0.0122
0.0128
0.0128
0.0148
0.0174 | CP113 | -0.1701
-0.0687
-0.0638
-0.0469
-0.0341
-0.0382
-0.0376
-0.0363
-0.0306
-0.0306
-0.0099
-0.0120
-0.0099 | | CP91 | -0.0015 -0.0015 -0.0002 -0.0002 -0.0074 -0.0132 -0.0132 -0.0037 -0.0037 -0.0097 -0.0067 0.0007 | CP112 | -0.0733
-0.0517
-0.0396
-0.0379
-0.0277
-0.0250
-0.0333
-0.0333
-0.0333
-0.0068
-0.0068 | | CP90 | 0.00940.01580.02150.00840.00350.00340.00080.0019 0.0103 0.0025 0.0025 0.0025 | CP1111 | -0.0513
-0.0588
-0.0515
-0.0309
-0.0309
-0.0422
-0.0422
-0.0367
-0.0262
-0.0182
-0.0182 | | CP89 | -0.0248
-0.0224
-0.0294
-0.0055
-0.0013
-0.0013
-0.0013
0.0010
0.0013
0.0004
0.0005
0.0005 | CP110 | 0.0205
-0.0385
-0.0121
-0.0254
-0.0261
-0.0316
-0.0319
-0.0319
-0.0319
-0.0319
-0.0319
-0.0088 | | CP88 | 0.0187
0.0025
0.0149
0.0041
0.0133
0.0081
0.0065
0.0066
0.0104
0.0160
0.0160
0.0160 | CP109 | -0.0156
-0.0490
-0.0525
-0.0325
-0.0230
-0.0300
-0.0343
-0.0343
-0.0290
-0.0228
-0.0259
-0.0259 | | CP87 | -0.0016
-0.0184
-0.0065
-0.0133
-0.0083
-0.0067
-0.0063
-0.0053
0.0017
0.0078
0.0014 | CP108 | 0.0104
-0.0341
-0.0410
-0.0275
-0.0172
-0.0227
-0.0227
-0.0211
-0.01122
-0.0122
-0.0123
-0.01038 | | CP86 | | CP107 | -0.0123
-0.0404
-0.0368
-0.0284
-0.0229
-0.0232
-0.0242
-0.0241
-0.0241
-0.0173
-0.0173 | | CP85 | | CP106 | 0.0061
-0.0293
-0.0415
-0.0253
-0.0135
-0.0171
-0.0175
-0.0175
-0.0195
-0.0195
-0.0195 | | Run | | Run | 69.
68.
216.
8.
66.
218.
214.
64.
118.
116.
116. | Table IV. Continued | CP142 | 0.0343
0.0019
0.0235
-0.0047
0.0104
0.0003
0.0068
0.0068
0.0052
0.0134
0.0134 | CP158 | -0.0164
-0.0254
-0.0347
-0.0161
-0.0101
-0.0103
-0.0123
-0.0123
-0.0120
-0.0120
-0.0120
-0.0120
-0.0120 | |-------|---|-------|--| | CP141 | $\begin{array}{c} -0.0693 \\ -0.0535 \\ -0.0416 \\ -0.0369 \\ -0.0308 \\ -0.0265 \\ -0.0298 \\ -0.0298 \\ -0.0247 \\ -0.0209 \\ -0.0190 \\ -0.0185 \\ -0.0183 \end{array}$ | CP157 | $\begin{array}{c} -0.0109 \\ -0.0293 \\ -0.0213 \\ -0.0118 \\ -0.0138 \\ -0.0158 \\ -0.0073 \\ -0.0021 \\ -0.0021 \\ 0.0024 \\ -0.0015 \\ 0.0021 \\ \end{array}$ | | CP140 | $\begin{array}{c} -0.0166 \\ -0.0352 \\ -0.0352 \\ -0.0346 \\ -0.0224 \\ -0.0228 \\ -0.0214 \\ -0.0231 \\ -0.0231 \\ -0.0231 \\ -0.0231 \\ -0.0173 \\ -0.0078 \\ \end{array}$ | CP156 | 0.0206
-0.0135
-0.0040
-0.0040
-0.0018
-0.0083
-0.0029
-0.0044
-0.0048
0.0066
0.0067
0.0063 | | CP139 | -0.0303
-0.0395
-0.0125
-0.0333
-0.0242
-0.0287
-0.0269
-0.0249
-0.0260
-0.0249
-0.0260
-0.0249
-0.0260
-0.0279 | CP155 | -0.0004
0.0018
0.0018
-0.0099
-0.0025
-0.0044
-0.0017
0.0048
0.0108
0.0108 | | CP138 | 0.0091
0.00218
0.00272
0.0115
0.0115
0.0173
0.00172
0.0096
0.0001
0.0001 | CP154 | -0.0361
-0.0345
-0.0345
-0.0258
-0.0165
-0.0169
-0.0153
-0.0156
-0.0058
-0.0058 | | CP137 | -0.0373
-0.0384
-0.0261
-0.0260
-0.0177
-0.0177
-0.0176
-0.0176
-0.0176
-0.0176
-0.0176
-0.0176
-0.0109 | CP153 | -0.0607
-0.0475
-0.0390
-0.0284
-0.0280
-0.0251
-0.0251
-0.0279
-0.0205
-0.0176
-0.0109
-0.0136 | | CP136 | $\begin{array}{c} 0.0094 \\ -0.0211 \\ -0.0050 \\ -0.0237 \\ -0.0144 \\ -0.0115 \\ -0.0110 \\ -0.0018 \\ 0.0018 \\ 0.0009 \\ \end{array}$ | CP152 | -0.0063
-0.0282
-0.0007
-0.0265
-0.0155
-0.0171
-0.0167
-0.0183
-0.0114
0.0002
-0.0124
-0.0124 | | CP135 | $\begin{array}{c} -0.0154 \\ -0.0315 \\ -0.0224 \\ -0.0258 \\ -0.0157 \\ -0.0157 \\ -0.0109 \\ -0.0123 \\ -0.0029 \\ -0.0048 \\ -0.0048 \end{array}$ | CP151 | -0.0264
-0.0338
-0.0173
-0.0263
-0.0191
-0.0198
-0.0192
-0.0171
-0.0171
-0.0176
-0.0176 | | CP134 | -0.0040
-0.0282
-0.0436
-0.0178
-0.0095
-0.0069
-0.0065
-0.0084
0.0047
-0.0069
0.0020 | CP150 | 0.0086
-0.0197
0.0002
-0.0216
-0.0117
-0.0114
-0.0129
-0.0129
-0.0129
-0.0026
0.0020 | | CP133 | -0.0194
-0.0373
-0.0343
-0.0235
-0.0184
-0.0151
-0.0175
-0.0102
-0.0059
-0.0059
-0.0025
-0.0003 | CP149 | -0.0053
-0.0267
0.0058
-0.0252
-0.0149
-0.0171
-0.0180
-0.0132
-0.0133
-0.0049
-0.0053 | | CP132 | 0.0158
-0.0217
-0.0205
-0.0202
-0.0065
-0.0139
-0.0063
-0.0089
0.0032
0.0032 | CP148 | 0.0214
-0.0145
0.0017
-0.0213
-0.0027
-0.0101
-0.0058
-0.0055
-0.0055
-0.0055
-0.0055
-0.0053
0.0085
0.0085 | | CP131 | -0.0096
-0.0296
-0.0177
-0.0203
-0.0169
-0.0126
-0.0083
-0.0032
-0.0032
-0.0032 | CP147 | $\begin{array}{c} -0.0152 \\ -0.0317 \\ -0.0215 \\ -0.0145 \\ -0.0144 \\ -0.0148 \\ -0.0079 \\ -0.0002 \\ 0.0002 \\ \end{array}$ | | CP130 | 0.0218
-0.0121
-0.0064
-0.0135
0.0001
-0.0049
-0.0007
-0.0007
-0.0007
0.0085
0.0085
0.0085
0.0085 | CP146 | $\begin{array}{c} 0.0242 \\ -0.0151 \\ -0.0181 \\ -0.0142 \\ -0.0086 \\ -0.0084 \\ -0.0022 \\ -0.0022 \\ -0.0042 \\ 0.0076 \\ 0.0076 \\ 0.0045 \\ 0.0058 \\ 0.0129 \end{array}$ | | CP129 | -0.0118
-0.0254
-0.0042
-0.0043
-0.0098
-0.0114
-0.0084
-0.0053
-0.0028
0.0020
0.0020 | CP145 | -0.0119
-0.0302
-0.0018
-0.0217
-0.0146
-0.0163
-0.0170
-0.0062
-0.0067
-0.0067
-0.0075 | | CP126 | $\begin{array}{c} -0.0337 \\ -0.0359 \\ -0.0449 \\ -0.0239 \\ -0.0136 \\ -0.0117 \\ -0.0121 \\ -0.0153 \\ -0.0093 \\ -0.0093 \\ 0.0014
\\ 0.0014 \\ \end{array}$ | CP144 | $\begin{array}{c} 0.0135 \\ -0.0147 \\ -0.0083 \\ -0.0108 \\ 0.0007 \\ -0.0058 \\ -0.0020 \\ 0.0000 \\ 0.0088 \\ 0.0088 \\ 0.0088 \\ 0.0088 \\ 0.0088 \\ 0.0088 \\ 0.0088 \\ 0.0088 \\ 0.0028 \\ $ | | CP125 | $\begin{array}{c} -0.0603 \\ -0.0480 \\ -0.0452 \\ -0.0299 \\ -0.0244 \\ -0.0197 \\ -0.0238 \\ -0.0238 \\ -0.0238 \\ -0.0238 \\ -0.0162 \\ -0.0147 \\ -0.0133 \\ -0.0147 \\ -0.0133 \\ -0.0137 \\ -0.0137 \\ -0.0078 \end{array}$ | CP143 | 0.0086
-0.0126
0.0093
-0.0105
-0.0054
-0.0038
0.0003
0.0044
0.0143 | | Run | 69.
68.
216.
8.
66.
64.
1118.
1118.
116.
117. | Run | 69.
68.
216.
8.
8.
214.
64.
118.
118.
116.
116. | | | | | | Table IV. Continued | CP175 | -0.0434
-0.0434
-0.0272
-0.0140
-0.0141
-0.0055
-0.0025
-0.0029
0.0060
0.0060 | CP193 | -0.2839
-0.0658
-0.0579
-0.0298
-0.0132
-0.0188
-0.0129
-0.0129
-0.0129
-0.01030
-0.0030 | |---------|--|-------|---| | CP174 | | CP191 | 0.1779 0.2002 0.1954 0.2085 0.2154 0.2195 0.2195 0.2359 0.2397 0.2474 0.2564 0.2655 | | CP173 (| | CP190 | 0.0045
0.1128
0.0951
0.1245
0.1310
0.1321
0.1598
0.1726
0.1576
0.1576
0.1576 | | _ | 0.1925
0.1742
0.1960
0.1960
0.1859
0.1859
0.2001
0.2049
0.2263
0.2229
0.2229 | CP189 | 0.0571
0.0871
0.0881
0.0758
0.0915
0.0915
0.1108
0.1164
0.1325
0.1280
0.1325 | | _ | 0.0851
0.1097
0.1033
0.1172
0.1242
0.1248
0.1269
0.1480
0.1576
0.1605
0.1605 | CP188 | -0.2294
-0.0100
-0.00084
0.0201
0.0259
0.0213
0.0420
0.0404
0.0569
0.0569
0.0462
0.0462 | | _ | 0.0050
0.0820
0.0820
0.0901
0.1055
0.1055
0.1296
0.1294
0.1378
0.1435
0.1435 | CP186 | 0.3010
0.3020
0.2915
0.2960
0.3123
0.3135
0.3136
0.3252
0.3313
0.33513
0.33513
0.33513 | | • | 0.0788
0.0558
0.0768
0.0705
0.0771
0.0833
0.1062
0.1103
0.1205
0.1207 | CP185 | 0.1719
0.1990
0.1962
0.2105
0.2214
0.2319
0.2319
0.2391
0.2582
0.2582 | | | -0.1056 - 0.0486 0.0439 0.0727 0.0691 0.0801 0.0990 0.1008 0.1082 0.1082 0.1034 0.1199 | CP184 | 0.1017
0.1497
0.1659
0.1574
0.1661
0.1701
0.1904
0.2036
0.2036
0.2138
0.2138 | | | -0.2075 - 0.0113 | CP183 | -0.0050
0.1033
0.1051
0.1209
0.1235
0.1376
0.1564
0.1577
0.1771
0.1674
0.1738 | | CP166 (| -0.21070.0024 - 0.0024 - 0.0040 - 0.0147 - 0.0263 - 0.0267 - 0.0461 - 0.0587 - 0.0534 - 0.0531 - 0.0531 | CP182 | -0.0438
0.0863
0.0732
0.1014
0.1061
0.1174
0.1187
0.1401
0.1382
0.1514
0.1567 | | CP165 | -0.2619 -0.0361 -0.00361 -0.0053 -0.0053 -0.0028 0.0149 0.0186 0.0316 0.0269 0.0269 0.0269 0.0255 0.0253 | CP181 | • | | CP164 | -0.21310.03050.02160.001520.00340.00550.00550.00560.00860.00860.00860.00860.00920.00920.00920.009320.01320.0 | CP180 | 1 | | CP163 | -0.2208 -0.0533 -0.0537 -0.0357 -0.0278 -0.0208 -0.0206 -0.0132 -0.0127 0.0013 -0.00076 -0.00076 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000 -0.00000000 | CP179 | • | | CP162 (| -0.1221 -0.0374 -0.0433 -0.0433 -0.01320 -0.0132 -0.0115 -0.0115 -0.0115 -0.0066 -0.00683 -0.00683 -0.00683 -0.0068 | CD178 | 0.02078
0.0039
0.0038
0.0207
0.0223
0.0425
0.0425
0.0425
0.0425
0.0425
0.0501
0.0501 | | CP161 (| 0.1192 0.0621 0.0639 0.0352 0.0352 0.0319 0.0241 0.0241 0.0241 - 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0183 0.0157 | CD177 | • • • | | CP159 (| -0.0331
-0.0392
-0.0130
-0.0217
-0.0228
-0.0251
-0.0245
-0.0245
-0.0195
-0.0195
-0.0075
-0.0099 | 71.00 | 0.1842
-0.0346
-0.0377
-0.0196
-0.0081
-0.0018
-0.0034
-0.00142
-0.0105
-0.0105
-0.0185
-0.0185
-0.0185 | | Run | 69 68 216 218. 214. 214. 64. 118. 116. 116. 17. 63. | ţ | 69. 68. 216. 8. 66. 218. 214. 66. 118. 118. 116. 116. 117. 63. | Table IV. Continued | CP900 | -0.2201
0.0201
0.0293
0.0548
0.0573
0.0580
0.0794
0.0794
0.0794
0.0985
0.0800 | CD996 | 0.1203
0.2050
0.1971
0.2090
0.2532
0.2532
0.2607
0.2607
0.2646
0.2646
0.3074 | |-------|--|-------|---| | CP208 | -0.2262
0.0142
0.0183
0.0457
0.0481
0.0508
0.0470
0.0719
0.0621
0.0801
0.0827
0.0671 | CP995 | | | CP207 | -0.2772
-0.0107
-0.0101
0.0230
0.0231
0.0236
0.0415
0.0582
0.0584
0.0445 | CP223 | 0.0678
0.1613
0.1553
0.1719
0.1823
0.1984
0.1966
0.2142
0.2223
0.2223
0.2454
0.2530 | | CP206 | -0.2461
-0.0089
-0.0001
0.0127
0.0234
0.0196
0.0404
0.0337
0.0459
0.0383
0.0383 | CP222 | 0.0478
0.1452
0.1605
0.1464
0.1626
0.1710
0.1666
0.1999
0.2069
0.2028
0.2330
0.2330 | | CP205 | 0.0654
0.1785
0.1792
0.1903
0.1985
0.2053
0.2190
0.2264
0.2264
0.2264
0.2254
0.2254 | CP221 | -0.0551
0.1062
0.0926
0.1269
0.1315
0.1335
0.1335
0.1618
0.1591
0.1682
0.1771
0.1698
0.1830 | | CP204 | $\begin{array}{c} -0.0399 \\ 0.0621 \\ 0.0574 \\ 0.0669 \\ 0.0848 \\ 0.0648 \\ 0.0524 \\ 0.0771 \\ 0.0812 \\ 0.0845 \\ 0.01134 \\ 0.0679 \\ 0.0689 \\ 0.0689 \\ 0.0860 \\ \end{array}$ | CP220 | -0.0100
0.1134
0.1232
0.1116
0.1321
0.1159
0.1139
0.1405
0.1405
0.1404
0.1648
0.1648 | | CP203 | -0.1098
0.0384
0.0373
0.0505
0.0633
0.0639
0.0544
0.0638
0.0638
0.0638 | CP219 | -0.1578
0.0419
0.0569
0.0649
0.0754
0.0789
0.0757
0.1019
0.1143
0.1148 | | CP202 | -0.0930
0.0551
0.0761
0.0516
0.0752
0.0380
0.0714
0.0713
0.0979
0.0646
0.0380 | CP218 | 0.0431
0.0439
0.0647
0.0530
0.0774
0.0726
0.1025
0.1104
0.1113
0.0946 | | CP201 | 0.0263
0.0263
0.0457
0.0515
0.0515
0.0528
0.0630
0.0777
0.0435
0.0435 | CP217 | 0.0232
0.0409
0.0480
0.0580
0.0580
0.0580
0.0725
0.0678
0.0678
0.0883
0.0883
0.0736 | | CP200 | 0.0219
0.0219
0.0426
0.0360
0.0450
0.0335
0.0666
0.0663
0.0695
0.0695
0.0695
0.0695 | CP216 | 0.0320
0.0447
0.0447
0.0498
0.0598
0.0497
0.0764
0.0858
0.0878
0.0878 | | CP199 | -0.2264
-0.0047
0.0265
0.0159
0.0289
0.0347
0.0522
0.0457
0.0559
0.0559
0.0559 | CP215 | -0.2604
-0.0156
-0.0038
0.0157
0.0191
0.0267
0.0392
0.0568
0.0568 | | CP198 | -0.2189 -0.0090 0.0038 0.0166 0.0252 0.0338 0.0525 0.0525 0.0410 0.0552 0.0552 | CP214 | -0.2317
-0.0063
0.0133
0.0124
0.0223
0.0238
0.0185
0.0342
0.0342
0.0482
0.0482 | | CP197 | -0.2817
-0.0359
-0.0401
0.0025
-0.0023
0.0168
0.0149
0.0287
0.0247
0.0397
0.0287 | CP213 | -0.2781
-0.0230
0.0034
0.0110
0.0173
0.0191
0.0374
0.0333
0.0334
0.0334 | | CP196 | -0.2410
-0.0269
-0.0127
-0.0029
0.0024
0.0112
0.0332
0.0178
0.0351
0.0401
0.0472 | CP212 | -0.2461
-0.0192
-0.0099
0.0046
0.0114
0.0178
0.0351
0.0245
0.0298
0.0294
0.0361
0.0361 | | CP195 | -0.2889
-0.0499
-0.0475
-0.0101
-0.0102
-0.0002
0.0035
0.0043
0.0369
0.0243 | CP211 | -0.0369
0.1139
0.1018
0.1406
0.1434
0.1521
0.1520
0.1808
0.1808
0.1917
0.1918
0.2001
0.2019 | | CP194 | -0.2377
-0.0378
-0.0337
-0.0128
-0.0024
-0.0024
0.0159
0.0037
0.0192
0.0066
0.0270
0.0269 | CP210 | -0.0961
0.0769
0.0728
0.0854
0.1024
0.0955
0.0951
0.1285
0.1286
0.1336
0.1335
0.1232 | | Run | 69.
68.
216.
8.
66.
214.
214.
64.
118.
116.
116. | Run | 69.
68.
216.
8.
66.
214.
118.
15.
116.
17. | | | | | | Table IV. Continued | Run CP227 CP228 CP229 CP239 CP229 C | | 0.00 | ~ 1 | 0.012.00.00.00.00.00.00.00.00.00.00.00.00.00 | |--|-------|--|------------|---| | CP227 CP228 CP229 CP230 CP231 CP234 CP235 CP236 CP237 CP237 CP237 CP237 CP238 CP239 CP240 CP239 CP230 CP230 CP230 CP230 CP236 CP239 CP239 CP240 CP238 CP239 CP239 CL186 CL186 CL186 CL187 CL186 CL187 <th< td=""><td>CP242</td><td>0.2109 0.2139 0.2030 0.2030 0.2247 0.2470 0.2603 0.2603 0.2603 0.2712 0.2712</td><td>CP262</td><td></td></th<> | CP242 | 0.2109 0.2139 0.2030 0.2030 0.2247 0.2470 0.2603 0.2603 0.2603 0.2712 0.2712 | CP262 | | | CDT221 CP223 CP223 CP234 CP235 CP234 CP235 CP236 CP237 CP237 CP237 CP238 CP237 CP238 CP237 CP238 CP237 CP238 CP237 CP238 CP237 CP238 CP238 CP238 CP237 CP238 CP238 CP237 CP238 CP238 CP237 CP238 CP238 CP238 CP238 CP238 CP239 CP238 CP238 CP239 CP238 CP239 CP238 CP239 CP238 CP239 CP238 CP239 <t< td=""><td>CP241</td><td>0.1382
0.1723
0.1672
0.1835
0.1901
0.2152
0.2333
0.2266
0.2333
0.2364</td><td>CP261</td><td></td></t<> | CP241 | 0.1382
0.1723
0.1672
0.1835
0.1901
0.2152
0.2333
0.2266
0.2333
0.2364 | CP261 | | | CP227 CP228 CP230 CP231 CP232 CP232 CP232 CP232 CP233 CP234 CP235 CP236 CP237 CP238 CP239 CP237 CP239 CP237 <th< td=""><td>CP240</td><td>0.1630
0.1718
0.1538
0.1765
0.1872
0.2042
0.2119
0.2254
0.2178
0.2181
0.2313</td><td>CP260</td><td></td></th<> | CP240 | 0.1630
0.1718
0.1538
0.1765
0.1872
0.2042
0.2119
0.2254
0.2178
0.2181
0.2313 | CP260 | | | CP227 CP228 CP229 CP231 CP232 CP232 CP234 CP234 CP235 CP236 CD186 CD186 CD187 CD238 CD187 CD287 <th< td=""><td>CP239</td><td>0.1542
0.1654
0.1599
0.1680
0.1797
0.1980
0.2022
0.2210
0.2133
0.2133
0.2213</td><td>CP259</td><td></td></th<> | CP239 | 0.1542
0.1654
0.1599
0.1680
0.1797
0.1980
0.2022
0.2210
0.2133
0.2133
0.2213 | CP259 | | | CP227 CP228 CP229 CP230
CP231 CP232 CP233 CP232 CP233 CP234 CP235 CP236 0.0762 0.1183 0.0653 0.1022 0.0902 0.1015 0.0878 0.0792 0.1868 0.1878 0.1721 0.2194 0.2094 0.2093 0.2107 0.243 0.1541 0.2197 0.1721 0.2190 0.2195 0.2097 0.2043 0.1541 0.2197 0.1982 0.2160 0.2243 0.1494 0.2249 0.2243 0.1708 0.2219 0.1981 0.2386 0.2548 0.2246 0.2247 0.1708 0.2241 0.2746 0.2386 0.2546 0.2776 0.2356 0.2348 0.2273 0.2766 0.2376 0.2396 0.2267 0.2396 0.2267 0.2396 0.2267 0.2396 0.2267 0.2396 0.2267 0.2396 0.2267 0.2396 0.2267 0.2396 0.2260 0.2296 0.2267 0.2396 0. | CP238 | 0.1665
0.1739
0.1567
0.1741
0.1889
0.2067
0.2142
0.2241
0.2231
0.2318
0.2323
0.2333 | CP258 | | | CP227 CP228 CP229 CP230 CP231 CP232 CP234 CP235 CP235 CP236 CP237 CP235 CP236 CP236 CP237 CP237 CP235 CP236 CP237 CP238 CP239 CP231 CP238 CP239 <th< td=""><td>CP237</td><td>0.1560
0.1846
0.1792
0.1983
0.2178
0.2105
0.2325
0.2325
0.2325
0.2326
0.2326
0.2326
0.2326
0.2326</td><td>CP257</td><td></td></th<> | CP237 | 0.1560
0.1846
0.1792
0.1983
0.2178
0.2105
0.2325
0.2325
0.2325
0.2326
0.2326
0.2326
0.2326
0.2326 | CP257 | | | CP227 CP228 CP229 CP230 CP231 CP232 CP233 CP234 C 0.0762 0.1183 0.0653 0.1022 0.0902 0.1015 0.0878 0.0792 0 0.1792 0.2094 0.2008 0.2188 0.2093 0.2107 0.2463 0.1547 0 0.1721 0.2120 0.1861 0.1940 0.1972 0.1831 0.2243 0.1484 0 0.1982 0.2173 0.2149 0.2259 0.2296 0.2267 0.1669 0 0.2396 0.2573 0.1940 0 0.236 0.2267 0.2266 0.2296 0.2366 0.2366 0.2997 0.1869 0 0.2069 0.1940 0 0 0.2366 0.2267 0.2636 0.2169 0.2216 0.2267 0.2636 0.2316 0.2216 0.2257 0.2386 0.2316 0.2216 0.2256 0.2316 0.2216 0.2257 0.2316 0.2256 0.2316 0.2257 0.2316 0.2257 <td>CP236</td> <td>0.1887
0.2197
0.1981
0.2131
0.2330
0.2486
0.2486
0.2514
0.2514
0.2635
0.2635
0.2635</td> <td>CP252</td> <td>-0.0475
0.0947
0.0909
0.1074
0.1208
0.1396
0.1379
0.1541
0.1641
0.1671
0.1671
0.1756</td> | CP236 | 0.1887
0.2197
0.1981
0.2131
0.2330
0.2486
0.2486
0.2514
0.2514
0.2635
0.2635
0.2635 | CP252 | -0.0475
0.0947
0.0909
0.1074
0.1208
0.1396
0.1379
0.1541
0.1641
0.1671
0.1671
0.1756 | | CP227 CP228 CP229 CP230 CP231 CP232 CP233 CP233 CP227 CP228 CP229 CP230 CP231 CP232 CP233 C.1792 0.0762 0.1183 0.0653 0.1022 0.0902 0.1015 0.0878 0.1721 0.2102 0.188 0.2093 0.2107 0.2463 0.1721 0.2101 0.2141 0.2152 0.2036 0.2064 0.2543 0.1982 0.2173 0.2149 0.2152 0.2036 0.2036 0.2048 0.2031 0.2101 0.2141 0.2152 0.2036 0.2044 0.2543 0.238 0.2318 0.2438 0.2438 0.2438 0.2438 0.2438 0.2438 0.2556 0.2557 0.2565 0.2557 0.2565 0.2577 0.2589 0.2036 0.2571 0.2036 0.2571 0.2038 0.2571 0.2039 0.2572 0.2530 0.2302 0.2589 0.2573 0.2661 0.248 0.2577 0.2678 0.2888 0.2814 0.2820 0.3150 0.2361 0.2488 0.2814 0.2820 0.3167 0.2871 0.3020 0.2661 0.2425 0.2507 0.2636 0.2507 0.2678 0.2888 0.2814 0.2820 0.3167 0.2871 0.3020 0.2661 0.2425 0.2297 0.2570 0.3168 0.2871 0.3020 0.2661 0.2425 0.2297 0.2570 0.3168 0.2871 0.3020 0.2661 0.2425 0.2507 0.2033 0.2159 0.2500 0.3000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.0000 0.0000 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2000 0.0000 | CP235 | 0.1868
0.2388
0.2219
0.2381
0.2541
0.2735
0.2735
0.2897
0.2897
0.2897
0.2890
0.2850 | CP251 | -0.1960
0.0297
0.0363
0.0567
0.0604
0.0811
0.0983
0.0923
0.1050
0.1050 | | CP227 CP228 CP229 CP230 CP231 CP232 C 0.0762 0.1183 0.0653 0.1022 0.0902 0.1015 0 0.1792 0.2094 0.2093 0.2198 0.2093 0.2107 0 0.1792 0.2094 0.2094 0.2186 0.1940 0.1972 0.1931 0.1721 0.2120 0.1861 0.1940 0.1972 0.1931 0.2031 0.2131 0.2141 0.2152 0.2097 0.2296 0.2096 0.2996 0.2396 0.2388 0.2488 0.2488 0.2577 0.2565 0.2350 0.2488 0.2574 0.2746 0.2776 0.2570 0.2655 0.2384 0.2571 0.266 0.2787 0.2785 0.2388 0.2874 0.2572 0.2350 0.2488 0.2871 0.3020 0.2678 0.2888 0.2814 0.2820 0.2871 0.3020 0.2661 0.2425 0.2296 0.2500 0.2871 0.3020 0.2661 0.2425 0.2296 0.2500 0.2871 0.3020 0.2661 0.2425 0.2296 0.2500 0.2871 0.3020 0.2651 0.2485 0.2488 0.2489 0.2570 0.2661 0.2487 0.2095 0.2091 0.2487 0.2095 0.2001 0.2091 0.2333 0.2570 0.2871 0.3020 0.0625 0.02491 0.2333 0.2570 0.2891 0.2899 0.2606 0.0431 0.0184 0.0255 0.0370 0.2444 0.2736 0.0342 0.0037 0.0033 0.0471 0.0581 0.2883 0.2444 0.2736 0.0347 0.0083 0.0073 0.0296 0.2865 0.0037 0.0083 0.0071 0.0081 0.0081 0.2883 0.3029 0.0092 0.0073 0.0073 0.0073 0.0092 0.2883 0.3029 0.0092 0.0092 0.0073 0.0073 0.0075 0.0076 0.2883 0.3029 0.0092 0.0092 0.0073 0.0073 0.0076 0.0076 0.2883 0.3029 0.0083 0.0042 0.00716 0.02883 0.3029 0.0083 0.0042 0.00716 0.02883 0.3029 0.0083 0.00716 0.0077 0.0073 0.0073 0.0076 0.2883 0.3029 0.0083 0.00716 0.0077 0.0073 0.0073 0.0076 0.2883 0.3029 0.0083 0.00716 0.0079 0.0076 0.2883 0.3029 0.0083 0.0016 0.00716 0.0077 0.0073 0.0076 0.2883 0.3029 0.0083 0.0017 0.0073 0.0076 0.2883 0.3029 0.0083 0.0016 0.0070 0.0073 0.0070 0 | CP234 | 0.0792
0.1547
0.1484
0.1546
0.1708
0.2109
0.2250
0.2215
0.2215
0.2211 | CP250 | -0.2448
-0.0085
-0.0109
0.0234
0.0328
0.0459
0.0451
0.0441
0.0441
0.0480 | | CP227 CP228 CP229 CP230 CP231 C 0.0762 0.1183 0.0653 0.1022 0.0902 0.1792 0.2094 0.2008 0.2188 0.2093 0.1792 0.2031 0.2141 0.2152 0.2036 0.1982 0.2031 0.2141 0.2152 0.2036 0.2031 0.2143 0.2149 0.2297 0.2229 0.2336 0.2336 0.2338 0.2420 0.2318 0.2438 0.2420 0.2318 0.2438 0.2420 0.2318 0.2485 0.2555 0.2566 0.2575 0.2588 0.2431 0.2589 0.2744 0.2746 0.2746 0.2344 0.2589 0.2744 0.2785 0.2661 0.2425 0.2334 0.2362 0.2527 0.2678 0.2888 0.2491 0.2334 0.2871 0.3020 0.2661 0.2425 0.2491 0.2333 0.2871 0.2859 0.2632 0.2491 0.2333 0.2813 0.2859 0.2654 0.0245 CP247 0.2340 0.2609 0.0625 0.0311 0.0189 0.2165 0.2444 0.2736 0.0625 0.0311 0.0189 0.2444 0.2736 0.0337 0.0633 0.0471 0.2863 0.2444 0.2736 0.0337 0.0033 0.0471 0.2863 0.2901 0.0017 0.0082 0.0071 0.2863 0.2001 0.0177 0.0192 0.0710 0.2883 0.3029 0.0092 0.0021 0.0712 0.2883 0.3065 0.0324 0.0021 0.0177 0.0192 0.0703 0.3883 0.3065 0.0383 0.00116 0.0703 | CP233 | 0.0878
0.2463
0.2243
0.2243
0.2543
0.2976
0.3026
0.3180
0.3156
0.3157
0.3156 | CP249 | -0.2069
-0.0391
-0.0253
-0.00229
-0.0037
-0.0042
-0.0089
-0.0089
-0.0081
-0.0081
-0.0081
-0.0095
-0.0091
-0.0091 | | CP227 CP228 CP229 CP230 CF 0.0762 0.1183 0.0653 0.1022 0.01792 0.2094 0.2008 0.2188 0.01721 0.2121 0.2100 0.1861 0.1940 0.01721 0.2031 0.2101 0.2141 0.2152 0.02031 0.2031 0.2143 0.2555 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2557 0.0033 0.2557 0.2559 0.0052 0.0024 0.0032 0.2559 0.0052 0.0052 0.0052 0.0052 0.2559 0.2059 0.0052
0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 | CP232 | 0.1015
0.2107
0.1831
0.2064
0.2296
0.2356
0.2356
0.2521
0.2636
0.2520
0.2524
0.2570 | CP248 | -0.0736
0.0345
0.0489
0.0472
0.0642
0.0654
0.0676
0.0676
0.0636
0.0636
0.0636
0.0636 | | CP227 CP228 CP229 CP229 C 0.0762 0.1792 0.2094 0.2008 0.1792 0.2094 0.2008 0.1792 0.2031 0.2120 0.1861 0.2031 0.2131 0.2141 0.1982 0.2173 0.2149 0.2396 0.2537 0.2565 0.2388 0.2485 0.2589 0.2744 0.2786 0.2871 0.3020 0.2678 0.2871 0.3020 0.2678 0.2871 0.2859 0.2744 0.2788 0.2871 0.2859 0.2678 0.2871 0.2859 0.2678 0.2813 0.2859 0.2632 0.2632 0.2340 0.2632 0.2639 0.2609 0.0635 0.2349 0.2669 0.0635 0.2349 0.2669 0.0635 0.2349 0.2669 0.0635 0.2349 0.2666 0.0317 0.2865 0.0342 0.2063 0.2779 0.2865 0.0317 0.2883 0.3029 0.0092 0.3163 0.3065 0.0329 0.2089 0.2089 0.2089 0.2089 0.03163 0.2089 0.2089 0.2089 0.2089 0.2089 0.2089 0.2089 0.2089 0.0150 | 231 | 0.0902
0.2093
0.1972
0.2229
0.2350
0.2172
0.2384
0.2577
0.2597
0.2597
0.2296
0.2159 | CP247 | 0.01947
0.0145
0.0189
0.0255
0.0533
0.0672
0.0672
0.0672
0.0672
0.0673
0.0710 | | CP227 CP228 CP229 0.0762 0.1183 0.0653 0.1792 0.2094 0.2008 0.1721 0.2120 0.1861 0.2031 0.2101 0.2141 0.1982 0.2173 0.2149 0.2396 0.2537 0.2565 0.2318 0.2485 0.2567 0.2485 0.2537 0.2565 0.2366 0.2787 0.2785 0.2871 0.3020 0.2678 0.2871 0.3020 0.2661 0.3150 0.3102 0.2683 0.2813 0.2859 0.2632 0.2814 0.2730 -0.0625 0.2340 0.2609 -0.0625 0.2344 0.2736 -0.0337 0.2444 0.2736 -0.0337 0.2663 0.2742 -0.0337 0.2663 0.2742 -0.0337 0.2685 0.2901 -0.0177 0.2883 0.3029 -0.0092 0.2883 0.3029 -0.0092 0.2883 0.3059 -0.00324 0.2883 0.3056 -0.0329 | CP230 | 0.1022
0.2188
0.1940
0.2152
0.2522
0.2319
0.2575
0.2716
0.2726
0.2726
0.2726
0.2726
0.2726 | CP246 | -0.2457
-0.0285
-0.0311
-0.0184
-0.0020
0.0073
-0.0033
0.0192
0.0192
0.0192
-0.0021
-0.0021 | | CP227 C CP227 C 0.0762 (0.1792 (0.1792 (0.1792 (0.1982 (0.2396 (0.2385 (0.2385 (0.2385 (0.2385 (0.23871 (0.23871 (0.2340 (0.23 | | 0.0653
0.2008
0.1861
0.2141
0.2149
0.2565
0.2560
0.2746
0.2785
0.2678
0.2681 | CP245 | | | CP227 0.0762 0.1792 0.1792 0.1791 0.2031 0.2031 0.2386 0.2362 0.2362 0.2871 0.2871 0.2871 0.2871 0.2871 0.2871 0.2873 0.2873 0.2874 0.2874 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 0.2340 | CP228 | 0.1183
0.2094
0.2120
0.2101
0.2173
0.2537
0.2635
0.2635
0.2744
0.2787
0.3102
0.3102 | CP244 | | | e | | | CP243 | 0.1914
0.2340
0.2165
0.2399
0.2444
0.2710
0.2663
0.2779
0.2825
0.3036
0.3163 | | | | | Run | 69.
68.
216.
8.
66.
214.
64.
118.
116.
116. | Table IV. Concluded | CP278 | 0.3235
0.3789
0.3881
0.3549
0.4017
0.4081
0.4083
0.4169
0.4735
0.4735 | | | |-------|--|-------|---| | CP277 | 0.2927
0.3111
0.3051
0.3090
0.3588
0.3596
0.3500
0.3471
0.2954
0.4292
0.4554 | | | | CP276 | 0.3623
0.2805
0.3263
0.2361
0.2586
0.2819
0.2882
0.2882
0.2882
0.2884
0.2804
0.3408 | | | | CP275 | 0.2806
0.2609
0.2753
0.2540
0.2834
0.2838
0.2856
0.2867
0.2960
0.3723
0.3420 | | | | CP274 | -0.0003
-0.0594
-0.0394
-0.0662
-0.0470
-0.0893
-0.0924
-0.0924
-0.0941
-0.0690
-0.0676
-0.0676 | | | | CP273 | -0.0867
0.0108
0.0266
-0.0215
0.0073
-0.0146
-0.013
0.0030
0.0106
0.0401
0.0045 | | | | CP272 | -0.0292
-0.0709
-0.0584
-0.0584
-0.0781
-0.0850
-0.0857
-0.0902
-0.0902
-0.0903
-0.0903 | | | | CP271 | -0.0213
-0.0684
-0.0406
-0.0569
-0.0569
-0.1011
-0.1013
-0.0810
-0.0862
-0.0862 | | | | CP270 | 0.0039
-0.0374
-0.0083
-0.0473
-0.0248
-0.0609
-0.0665
-0.0663
-0.0663
-0.0663
-0.0663
-0.0364
-0.0364
-0.0364
-0.0364 | | | | CP269 | -0.0445
-0.0251
-0.0124
-0.0170
-0.0200
-0.0239
-0.0203
-0.0139
-0.0139
-0.0139
-0.0139
-0.0139 | | | | CP268 | -0.0307
0.0031
0.0263
-0.0045
0.0207
0.0025
0.0140
0.0168
0.0334
0.0336
0.0140 | CP284 | 0.2002
0.3010
0.3146
0.2917
0.3089
0.3118
0.3465
0.3361
0.3364
0.3364
0.3360 | | CP267 | -0.0922
-0.0119
0.0010
-0.0009
0.0102
0.0112
0.0112
0.0217
0.0320
0.0384
0.0353
0.0353 | CP283 | 0.2885
0.2672
0.2715
0.2715
0.2818
0.2665
0.2665
0.2851
0.3055
0.3172
0.3172
0.2555 | | CP266 | -0.0941
-0.0106
-0.0171
0.0002
0.0103
0.0129
0.0151
0.0258
0.0253
0.0308
0.0348
0.0346
0.0426 | CP282 | 0.3643
0.2973
0.2955
0.2819
0.3047
0.2442
0.2712
0.2712
0.2726
0.3726
0.3726
0.3726 | | CP265 | -0.1460
-0.0303
-0.0171
-0.0104
-0.0072
0.0060
0.0104
0.0154
0.0165
0.0216
0.0320
0.0320 | CP281 | 0.3107
0.3448
0.3455
0.3402
0.3567
0.3286
0.3106
0.3341
0.3708
0.3380
0.3380
0.2645 | | CP264 | $\begin{array}{c} -0.1278 \\ -0.0236 \\ -0.0247 \\ -0.0113 \\ -0.0043 \\ 0.0030 \\ 0.0124 \\ 0.0124 \\ 0.0128 \\ 0.0128 \\ 0.0128 \\ 0.0128 \\ 0.0229 \\
0.0229 \\ $ | CP280 | 0.3108
0.3842
0.3609
0.3863
0.03880
0.3881
0.4136
0.4403
0.4403
0.4363
0.4363
0.3392
0.3392 | | CP263 | -0.1476
-0.0358
-0.0348
-0.0161
-0.0101
-0.0000
0.0010
0.0013
0.0072
0.0152
0.0152 | CP279 | 0.3050
0.3981
0.4087
0.3743
0.4015
0.4033
0.4033
0.4280
0.4374
0.4177
0.4320
0.4320
0.4320 | | Run | 69.
68.
216.
8.
218.
214.
64.
118.
116. | Run | 69.
68.
216.
8.
66.
214.
214.
64.
115.
116. | | | | | | Table V. Pressure Coefficients for l/h=11.7 Cavity | CP10 | -0.0732
-0.0667
-0.0671
-0.0674
-0.0552
-0.0563
-0.0509
-0.0404
-0.0383
-0.0383
-0.0663 | CP37 -0.0818 -0.0592 -0.0754 -0.0628 -0.0476 -0.0475 -0.0510 -0.0575 -0.0539 | | |---------------|--|--|--| | CP9 | -0.1020 -1.020 -1.0816 -1.0816 -1.0813 -1.0.0853 -1.0.0849 -1.0.0816 -1.0.0816 -1.0.0681 -1.0.0682 -1.0.0637 -1.0.06 | CP36 -0.0652 -0.0580 -0.0478 -0.0486 -0.0514 -0.0514 -0.0387 -0.0306 -0.0307 -0.0337 | | | CP8 | -0.0979 -0.0976 -0.0820 -0.0820 -0.0819 -0.0896 -0.0996 -0.0895 -0.0895 -0.0895 -0.0839 -0.083 | CP35 -0.1054 -0.0794 -0.0737 -0.0614 -0.0587 -0.0552 -0.0553 -0.0454 -0.0410 -0.0389 | | | CP7 | 0.1578 - 0.1453 - 0.1453 - 0.1453 - 0.1555 - 0.1555 - 0.1555 - 0.1623 - 0.1421 - 0.1613 - 0.1503 -
0.1503 - 0.1 | CP34 -0.0755 -0.0601 -0.0534 -0.0534 -0.0439 -0.0336 -0.0336 -0.0336 -0.0340 -0.0340 -0.0248 -0.0248 -0.0248 | | | CP6 | -0.17050.17710.17370.17020.19620.19720.19720.20770.20770.23620.23620.23620.23620.23620.237020.3702 - | CP33 -0.0878 -0.0525 -0.0536 -0.0396 -0.0394 -0.0263 -0.0213 -0.0213 -0.0217 -0.0217 | | | CP5 | -0.2275 -0.2123 -0.2123 -0.2632 -0.2401 -0.2887 -0.2889 -0.2580 -0.2580 -0.2580 -0.2580 -0.258 | CP21 -0.0687 -0.0314 -0.0331 -0.0286 -0.0147 -0.0137 -0.0281 -0.0281 -0.0294 -0.0294 | | | CP4 | -0.2163 | CP20 -0.0597 -0.0490 -0.0271 -0.0341 -0.0287 -0.0287 -0.0287 -0.0287 -0.0287 -0.0287 -0.0113 -0.0133 -0.0103 | | | CP3 | -0.28710.29620.30430.29590.37020.42670.45290.41950.48620.3148 | CP19 -0.0749 -0.0453 -0.0366 -0.0392 -0.0293 -0.0268 -0.0268 -0.0268 -0.0268 -0.0268 | | | CP2 | -0.2404
-0.2143
-0.2413
-0.3027
-0.326
-0.3500
-0.2696
-0.2936
-0.2936
-0.2005
-0.2005 | CP18 -0.0452 -0.0374 -0.0375 -0.0363 -0.0263 -0.0267 -0.0241 -0.0236 -0.0236 -0.0236 -0.0214 | | | CP1 | | CP17 -0.0901 -0.0554 -0.0554 -0.0493 -0.0339 -0.0313 -0.0484 -0.0304 -0.0304 -0.0307 -0.0307 -0.0307 -0.0307 -0.0307 -0.0307 | | | $T_{t\infty}$ | 9444 | CP16 -0.0762 -0.0581 -0.0581 -0.0541 -0.0548 -0.0403 -0.0380 -0.0386 -0.0386 -0.0386 | | | 7 | 65.7
187.5
201.8
418.2
231.4
540.8
624.2
273.2
566.5
667.9
324.3
324.3 | CP15 -0.0476 -0.0240 -0.0373 -0.0373 -0.0187 -0.0065 -0.0065 -0.0084 -0.0084 | | | į | $p_{t\infty}$ 1132.3 962.2 1020.4 2124.0 784.2 1846.0 2123.6 870.8 1794.0 2121.2 869.6 966.6 1733.0 | CP14 -0.0471 -0.0360 -0.0373 -0.0334 -0.0253 -0.0254 -0.0208 -0.0189 -0.0082 -0.0189 -0.0082 | | | ; | p_{∞} 1065.1 779.8 1666.9 1613.2 1213.6 1393.0 545.1 1117.3 1324.2 571.1 1025.4 | CP13 -0.0875 -0.0547 -0.0469 -0.0362 -0.0365 -0.0368 -0.0251 -0.0217 -0.0217 -0.0111 | | | 9 | $R_{\infty} \times 10^{-1}$ 1.0 1.6 3.4 4.0 1.6 1.6 1.9 1.9 1.9 | CP12 -0.0830 -0.0694 -0.0717 -0.0617 -0.0612 -0.0512 -0.0512 -0.0492 -0.0492 -0.0432 -0.0432 -0.0415 | | | | $M_{\infty} R_{\infty}$ 0.30 0.59 0.60 0.80 0.80 0.85 0.85 0.90 0.90 | CP11
-0.1120
-0.0846
-0.0930
-0.0758
-0.0678
-0.0667
-0.0788
-0.0667
-0.0660
-0.0625
-0.0660
-0.0625 | | | | Run
74.
273.
39.
136.
173.
41.
236.
240.
37.
38.
140.
271. | g | | | | | | | Table V. Continued | | CP67
-0.1389
-0.1169
-0.1106
-0.1001
-0.0996
-0.0996
-0.0891
-0.0888
-0.0840
-0.0840 | CP108 -0.1180 -0.1079 -0.1052 -0.1056 -0.0928 -0.0966 -0.0863 -0.0863 -0.0868 -0.0863 | |--------|--|---| | | -0.1460
-0.1245
-0.1245
-0.1341
-0.0951
-0.0962
-0.1030
-0.0874
-0.0874
-0.0830
-0.0830
-0.0830
-0.0830 | CP107 -0.1641 -0.1353 -0.1353 -0.1262 -0.1262 -0.1074 -0.1050 -0.0966 -0.0966 -0.0967 -0.0905 -0.0905 | | CDer | 99999999999 | CP106 -0.1487 -0.1317 -0.1385 -0.1289 -0.1157 -0.1018 -0.0946 -0.0953 -0.0964 -0.0966 | | CP50 | 9999999999999 | CP105 -0.1831 -0.1473 -0.1473 -0.1339 -0.1244 -0.1087 -0.1087 -0.0993 | | 3 CP40 | | CP104 -0.1575 -0.1431 -0.1320 -0.1314 -0.1184 -0.1096 -0.1097 -0.0939 -0.0832 -0.0826 | | . CP48 | 9999999999999 | CP103 -0.1631 -0.1373 -0.1387 -0.1265 -0.1183 -0.1050 -0.1050 -0.1015 -0.0951 -0.0913 -0.0927 -0.0827 | | CP47 | -0.1441
-0.1191
-0.1361
-0.1142
-0.0873
-0.0859
-0.0789
-0.0789
-0.0789
-0.0789
-0.0789
-0.0789
-0.0789
-0.0789 | CP102 -0.1488 -0.1348 -0.1245 -0.1219 -0.1047 -0.1031 -0.1035 -0.0948 -0.0885 -0.0885 -0.0823 | | CP46 | -0.1278
-0.1108
-0.1352
-0.1140
-0.0833
-0.0837
-0.0929
-0.0762
-0.0824
-0.0762
-0.0855
-0.0666
-0.0666 | CP101
-0.1708
-0.1411
-0.1328
-0.1243
-0.1213
-0.1092
-0.1055
-0.1055
-0.0990
-0.0991
-0.0954
-0.0870 | | CP45 | -0.1590
-0.1308
-0.1309
-0.1184
-0.1017
-0.0973
-0.0883
-0.0883
-0.0858
-0.0858 | CP100 -0.1343 -0.1385 -0.1306 -0.1177 -0.0920 -0.0901 -0.1033 -0.0885 -0.0843 -0.0943 | | CP44 | -0.1378
-0.1224
-0.1197
-0.1148
-0.0946
-0.0943
-0.0859
-0.0859
-0.0754
-0.0760
-0.0760 | CP99 -0.1684 -0.1405 -0.1287 -0.1218 -0.1218 -0.10194 -0.1066 -0.1163 -0.0905 -0.0905 -0.0981 -0.0926 | | CP43 | 0.0172
0.0480
0.0576
0.0577
0.0620
0.0634
0.0678
0.0625
0.0625
0.0625
0.0651 | CP98 -0.1486 -0.1321 -0.1197 -0.1186 -0.1025 -0.1025 -0.0944 -0.0870 -0.0809 -0.0796 | | CP42 | -0.0376 -0.0347 -0.0310 -0.0310 -0.0351 -0.0351 -0.0354 -0.0357 -0.0330 -0.0330 | CP97 -0.1657 -0.1317 -0.1317 -0.1321 -0.1135 -0.1019 -0.0928 -0.0886 -0.0886 -0.0842 -0.0842 | | CP41 | -0.0788 -0.0479 -0.0615 -0.0615 -0.0214 -0.0298 -0.0364 -0.0273 -0.0273 -0.0265 -0.0309 | CP85 -0.1681 -0.1395 -0.1395 -0.1255 -0.1255 -0.1059 -0.1022 -0.0968 -0.0922 -0.0829 | | CP40 | 0.0371
0.0569
0.0568
0.0568
0.0653
0.0656
0.0708
0.0658
0.0771
0.0771
0.0658 | CP84 -0.1480 -0.1316 -0.1316 -0.1316 -0.1149 -0.1091 -0.1091 -0.0928 -0.0928 -0.0938 -0.0846 -0.0865 -0.0861 | | CP39 | -0.0186
0.0017
0.0069
0.0119
-0.0051
0.0027
-0.0027
0.0010
-0.0032
0.0005
-0.0032
0.0005 | CP80 -0.1467 -0.1319 -0.1225 -0.1185 -0.1023 -0.1047 -0.0942 -0.0873 -0.0866 -0.08791 -0.0819 | | CP38 | -0.0498
-0.0470
-0.0390
-0.0423
-0.0463
-0.0465
-0.0455
-0.0424
-0.0373
-0.0428 | CP68 0.0361 0.0402 0.0510 0.0510 0.0486 0.0343 0.0345 0.0345 0.0346 0.0346 0.0348 0.0338 | | Run | 74.
273.
39.
136.
173.
41.
236.
172.
240.
37.
272.
38.
140.
271. | Run 74. 273. 39. 136. 173. 41. 236. 1772. 240. 37. 272. 38. 140. 271. | Table V. Continued | | | | 03317701741001810 | |---------
--|-------|---| | CP135 | -0.1864
-0.1576
-0.1577
-0.1521
-0.1330
-0.1198
-0.1095
-0.10147
-0.0925
-0.0925 | CP151 | -0.0523
-0.0567
-0.0491
-0.0472
-0.0725
-0.0725
-0.0784
-0.0717
-0.0717
-0.0631
-0.0663 | | CP134 | -0.1455
-0.1284
-0.1286
-0.1290
-0.1000
-0.1095
-0.0929
-0.0974
-0.0888
-0.0945
-0.0945
-0.0945 | CP150 | -0.1301
-0.1258
-0.1109
-0.1151
-0.1184
-0.1184
-0.1120
-0.1120
-0.1060
-0.0948
-0.0909
-0.0850
-0.0850 | | CP133 (| -0.17340.14240.14210.12980.12530.10740.10180.09900.09980.09980.09980.09560.09560.09570.09570.09570.09570.09580.095 | CP149 | -0.1968
-0.1704
-0.1489
-0.1456
-0.1398
-0.1294
-0.1279
-0.1279
-0.1079
-0.1071
-0.0954
-0.0974
-0.0974 | | CP132 (| -0.14910.13510.12860.12580.11960.10500.10920.09820.09460.09820.09470.08470.0847 | CP148 | -0.1693
-0.1569
-0.1404
-0.1432
-0.1286
-0.1192
-0.1181
-0.1136
-0.0975
-0.0942
-0.0879
-0.0879
-0.0899 | | CP131 | -0.16670.14300.13650.12710.12710.10790.10890.09630.08720.0935 - | CP147 | -0.1787
-0.1476
-0.1429
-0.1347
-0.1266
-0.1140
-0.1188
-0.0992
-0.0988
-0.0988
-0.0935
-0.0880 | | CP130 | -0.1495 -0.1354 -0.1245 -0.1245 -0.1225 -0.1175 -0.1028 -0.1028 -0.0946 -0.0883 -0.0789 -0.0780 -0.078 | CP146 | -0.1419
-0.1296
-0.1282
-0.1261
-0.1075
-0.1043
-0.1064
-0.0991
-0.0955
-0.0875
-0.0877
-0.0837 | | CP129 | -0.1773
-0.1452
-0.1340
-0.1248
-0.1223
-0.1136
-0.1039
-0.1177
-0.098
-0.0988
-0.0988 | CP145 | -0.1882
-0.1552
-0.1395
-0.1318
-0.1216
-0.1261
-0.1135
-0.1014
-0.0935
-0.0935 | | CP124 | 0.1624
0.1489
0.1453
0.1444
0.0857
0.0872
0.0872
0.0650
0.0665
0.0658
0.0558 | CP144 | -0.1499
-0.1351
-0.1301
-0.1262
-0.1015
-0.1075
-0.1033
-0.0988
-0.0988
-0.0988
-0.0987
-0.0987 | | CP123 | 0.0760
0.0831
0.0913
0.0947
0.0538
0.0533
0.0433
0.0443
0.0335
0.0335
0.0313 | CP143 | -0.1711
-0.1466
-0.1306
-0.1259
-0.1165
-0.1165
-0.1168
-0.0965
-0.0988
-0.0988
-0.0888
-0.0887
-0.0887 | | CP115 | 0.1042
0.1443
0.1364
0.1487
0.1604
0.1665
0.1676
0.1724
0.1720
0.1720
0.1720 | CP142 | -0.1512
-0.1394
-0.1207
-0.1191
-0.1118
-0.1076
-0.0926
-0.0893
-0.0813
-0.0846
-0.0868 | | CP114 | 0.1076 0.1254 0.1199 0.1265 0.1355 0.1365 0.1410
0.1463 0.1446 0.1508 0.1508 0.1454 0.1457 | CP141 | 0.1547
0.1639
0.1639
0.1715
0.1249
0.1056
0.0996
0.0808
0.0834
0.0834 | | CP113 | 0.0524
0.0907
0.0808
0.0010
0.0988
0.1080
0.1095
0.1076
0.1076
0.1033
0.1033 | CP140 | $\begin{array}{c} 0.1400 \\ 0.1165 \\ 0.1254 \\ 0.1198 \\ 0.0559 \\ 0.0578 \\ 0.0476 \\ 0.0285 \\ 0.0339 \\ 0.0285 \\ 0.0339 \\ 0.0285 \\ 0.0285 \\ 0.00281 \\ 0.$ | | CP112 | 0.0574
0.0745
0.0732
0.0818
0.0736
0.0779
0.0778
0.0753
0.0753
0.0753
0.0760
0.0760 | CP139 | 0.0409
0.0270
0.0425
0.0344
-0.0182
-0.0170
-0.027
-0.0298
-0.0215
-0.0341
-0.0341
-0.0341
-0.0341
-0.0341 | | CP111 | 0.0212
0.0451
0.0385
0.0510
0.0510
0.0376
0.0379
0.0269
0.0298
0.0260
0.0261
0.0261
0.0261 | CP138 | -0.0412
-0.0562
-0.0354
-0.0469
-0.0737
-0.0767
-0.0767
-0.0767
-0.0669
-0.0669
-0.0669
-0.0669 | | CP110 | -0.0047
-0.0047
-0.0089
-0.0089
-0.0186
-0.0193
-0.0177
-0.0167
-0.0167
-0.0177
-0.0092 | CP137 | -0.1518
-0.1269
-0.1208
-0.1141
-0.1240
-0.1105
-0.10178
-0.1045
-0.1007
-0.1007
-0.0965 | | CP109 | -0.0701
-0.0547
-0.0624
-0.0486
-0.0603
-0.0603
-0.0626
-0.0628
-0.0628
-0.0628
-0.0628 | CP136 | -0.1738
-0.1572
-0.1436
-0.1420
-0.1346
-0.1249
-0.1254
-0.1199
-0.1191
-0.1056
-0.0954 | | Run | 7427339136. 17341. 236. 1772. 240. 37. 272. 38. 140. 271. | Run | 74.
273.
39.
136.
173.
41.
236.
172.
240.
37.
272.
38.
140. | Table V. Continued | CP168 | 0.3792
0.4100
0.4067
0.4148
0.4163
0.4153
0.4023
0.4001
0.3952
0.3632 | CP184 | 0.4489
0.4747
0.4621
0.4805
0.4717
0.4640
0.4508
0.4508
0.4497
0.4406
0.4250
0.4250 | |-------|--|-------|---| | CP167 | 0.2973
0.3464
0.3307
0.3474
0.3658
0.3675
0.3731
0.3732
0.3610
0.3610
0.3610
0.3610
0.36335 | CP183 | 0.4132
0.4538
0.4380
0.4380
0.4514
0.4441
0.4493
0.4507
0.4404
0.4307
0.4307
0.4307
0.4307
0.43117 | | CP166 | 0.2590
0.2901
0.2903
0.2949
0.3222
0.3225
0.3253
0.3263
0.3263
0.3263
0.3263 | CP182 | 0.4141
0.4394
0.4248
0.4411
0.4368
0.4277
0.4318
0.4242
0.4208
0.4208
0.4215
0.4215
0.4385
0.3865 | | CP165 | 0.1987
0.2524
0.2354
0.2355
0.2826
0.2902
0.2906
0.2913
0.2897
0.2897
0.2897 | CP181 | 0.3714
0.4165
0.3935
0.4171
0.4187
0.4187
0.4085
0.4043
0.3897
0.3826 | | CP164 | 0.1969
0.2289
0.2206
0.2314
0.2589
0.2597
0.2639
0.2664
0.2603
0.2603 | CP180 | 0.3302
0.3690
0.3477
0.3642
0.3839
0.3852
0.3757
0.3757
0.3757
0.3757 | | CP163 | 0.1704
0.2154
0.1953
0.2162
0.2339
0.2345
0.2345
0.2352
0.2312
0.2176
0.2176 | CP179 | 0.2468
0.2979
0.2890
0.2998
0.3288
0.3310
0.3328
0.3329
0.3358
0.3320
0.3320 | | CP162 | 0.1847
0.2055
0.2055
0.2097
0.2114
0.2142
0.2142
0.2030
0.1960
0.1923
0.1806
0.1613 | CP178 | 0.2260
0.2552
0.2607
0.2579
0.2929
0.2988
0.3082
0.3082
0.3005
0.3052
0.3052
0.3052 | | CP161 | 0.1555
0.1555
0.1762
0.1972
0.1773
0.1584
0.1532
0.1339
0.1339
0.1286 | CP177 | 0.1768
0.2324
0.2079
0.2291
0.2602
0.2687
0.2687
0.2687
0.2687
0.2687
0.2637
0.2637
0.2637 | | CP159 | 0.1281
0.1166
0.1271
0.1267
0.0580
0.0571
0.0469
0.0357
0.0278
0.0244
0.0059 | CP176 | 0.1851
0.2164
0.2092
0.2157
0.2414
0.2476
0.2399
0.2399
0.2350
0.2350 | | CP158 | -0.1243
-0.1131
-0.1179
-0.1099
-0.0975
-0.0975
-0.093
-0.0968
-0.0934
-0.0934
-0.0934
-0.0934 | CP175 | 0.1708
0.2038
0.1995
0.2061
0.2142
0.2148
0.2148
0.2044
0.2058
0.2058
0.1944
0.1856 | | CP157 | -0.1823
-0.1517
-0.1434
-0.1357
-0.1273
-0.1141
-0.1185
-0.0982
-0.0989
-0.0984
-0.0984 | CP174 | 0.1875
0.1990
0.1999
0.1995
0.1862
0.1823
0.1812
0.1625
0.1625
0.1568
0.1540 | | CP156 | -0.1517
-0.1391
-0.1294
-0.1258
-0.1075
-0.1073
-0.1093
-0.0999
-0.0924
-0.0928
-0.0878
-0.0878 | CP173 | 0.4139
0.4485
0.4308
0.4520
0.4500
0.4517
0.4506
0.4382
0.4383
0.4198
0.4198 | | CP155 | -0.1689
-0.1431
-0.1341
-0.1256
-0.1080
-0.1067
-0.1166
-0.0928
-0.0928
-0.0975
-0.0905 | CP172 | 0.4670
0.4915
0.4935
0.4736
0.4699
0.4777
0.4695
0.4525
0.4402
0.4204
0.3911 | | CP154 | 0.1865
0.1863
0.1789
0.1789
0.1373
0.1353
0.1276
0.1120
0.1083
0.1004
0.0944
0.0860 | CP171 | 0.4439
0.4767
0.4804
0.4913
0.4724
0.4640
0.4701
0.4701
0.4504
0.4423
0.4386
0.4199
0.3958 | | CP153 | 0.1277
0.1260
0.1201
0.1270
0.0651
0.0464
0.0425
0.0425
0.0272
0.0285
0.0238 | CP170 | 0.4514
0.4763
0.4586
0.4789
0.4636
0.4667
0.4667
0.4453
0.4388
0.4388
0.4368
0.4368
0.4368 | | CP152 | 0.0662
0.0372
0.0522
0.0434
-0.0143
-0.0149
-0.0162
-0.0162
-0.0162
-0.0165
-0.0245 | CP169 | 0.3913
0.4324
0.4302
0.4463
0.4463
0.4270
0.4363
0.4364
0.4171
0.4207
0.4102
0.4083
0.3916
0.3710 | | Run | 74.
273.
39.
136.
173.
41.
236.
172.
240.
37.
272.
38.
140. | Run | 74. 273. 39. 39. 136. 173. 41. 240. 37. 272. 638. 140. 6271. 6271. 6271. 6271. 6271. 6271. 6273. | | | | | | Table V. Continued | 50 17 1 1 1 2 8 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2232
5423
5859
5859
5656
5982
5740
5668
5668
5668
5688
5688
5689
55751
55751
5594
5594
5594 |
--|--| | CP202 0.3662 0.3958 0.4137 0.4041 0.3977 0.3978 0.4035 0.3978 0.3978 0.3978 0.3629 | | | CP201 (0.3230 0.3890 0.3890 0.3789 0.4028 0.4007 0.4007 0.4051 0.4051 0.3994 0.3868 0.3868 0.3567 | CP231
0.5583
0.5968
0.6016
0.6147
0.5884
0.5976
0.5976
0.5615
0.5681
0.5681 | | CP200 C
0.3232 0.3812
0.3812 0.38140
0.3835 0.3835
0.3835
0.3874 0.3874
0.3873 0.3873
0.3873 0.3873 | CP230
0.5905
0.6170
0.6054
0.6015
0.6015
0.60172
0.6034
0.5727
0.5727
0.5623
0.5623 | | CP199 (0.2689) (0.3284) (0.3459) (0.3459) (0.3435) (0.3576) (0.3613) (0.3613) (0.3613) (0.3613) (0.3744) (0.316) (0.3316) | 0.5574
0.5574
0.6381
0.6020
0.5886
0.5828
0.5828
0.5591
0.5772
0.5772
0.5772 | | CP198 (0.2813 -0.2813 -0.3244 0.3122 0.3207 0.3469 0.3488 0.3587 0.3587 0.3581 0.3521 0.3521 0.3521 0.3282 | CP227 0.5382 0.5852 0.58611 0.5871 0.5873 0.5829 0.5770 0.5770 0.5652 0.5652 | | CP197 (0.2334 0.2947 0.2564 0.2915 0.3193 0.3266 0.3229 0.3229 0.3229 0.3229 0.3234 0.304 0.304 | CP226
0.5155
0.5478
0.5525
0.5528
0.5578
0.5500
0.5570
0.5511
0.5511
0.5511
0.5511 | | CP196 (0.2317 0.2668 0.2641 0.2971 0.2943 0.2973 0.2973 0.2973 0.2973 0.3065 0.3004 0.3002 0.3002 0.2983 | CP225 0.4822 0.5392 0.5384 0.5570 0.5570 0.5529 0.5529 0.5622 0.5623 0.5624 0.5624 0.5624 0.5624 0.5624 0.5624 | | 0.1904
0.2431
0.2431
0.2155
0.2380
0.2681
0.2740
0.2740
0.2750
0.2750
0.2750
0.2750
0.2750
0.2750
0.2750 | CP221
0.4549
0.5025
0.4780
0.4929
0.4909
0.4776
0.4776
0.4776
0.4776
0.4776
0.4776 | | CP194 (0.1995 0.2270 0.2502 0.2502 0.2536 0.25473 0.2518 0.2556 0.2556 0.2556 0.2551 0.2551 0.2524 | CP220
0.4523
0.4722
0.4878
0.4691
0.4528
0.4692
0.4692
0.4482
0.4482
0.4482
0.4182
0.4182 | | CP193 (0.1259) (0.1259) (0.1621) (0.1804) (0.2044) (0.2055) (0.2053) (0.2053) (0.2053) (0.2068) (0.2068) (0.2008) | CP217
0.3665
0.4222
0.4302
0.4347
0.4357
0.4349
0.4349
0.4349
0.4394
0.4195
0.4195
0.3979
0.3816 | | CP191 0.4673 0.5029 0.4690 0.4832 0.4835 0.4839 0.4775 0.4649 0.4538 0.4467 0.4302 0.4195 0.4195 | CP216
0.3873
0.4262
0.4278
0.4310
0.4407
0.4358
0.4358
0.4347
0.4292
0.4201
0.4201 | | CP190 (0.4581) (0.4844) (0.4678) (0.4678) (0.4678) (0.4654) (0.4654) (0.4530) (0.4530) (0.4165) (0.4043) (0.404 | CP213 0.2054 0.2587 0.2594 0.2666 0.2977 0.3007 0.3128 0.3028 0.3125 0.3125 | | CP189 0.3645 0.4113 0.4043 0.4201 0.4218 0.4213 0.4213 0.4213 0.4213 0.4213 0.4213 0.43089 0.3089 | CP212 0.2313 0.2689 0.2535 0.2646 0.2967 0.2967 0.3063 0.3071 0.2991 0.2991 | | 0.2278
0.2631
0.2458
0.2599
0.2930
0.2927
0.2925
0.2955
0.3065
0.2963 | CP205 0.3363 0.3965 0.3848 0.4116 0.4278 0.4160 0.4254 0.4329 0.4166 0.4150 0.4150 | | CP186
0.4165
0.4392
0.4243
0.4401
0.4338
0.4338
0.4303
0.4254
0.4284
0.4264
0.4264
0.4264
0.4264 | CP204 0.3548 0.3956 0.3649 0.4047 0.4049 0.3981 0.4144 0.4041 0.3995 0.3995 | | CP185 0.4314 0.4715 0.4487 0.4657 0.4657 0.4659 0.4465 0.4465 0.4465 0.4465 0.4465 0.4363 0.4405 0.4363 0.4405 0.4 | CP203 0.3405 0.3921 0.3657 0.4012 0.3989 0.4015 0.4015 0.3919 0.3319 0.3775 0.3645 | | Run (74. 273. 39. 136. 1773. 41. 236. 1772. 240. 37. 277. 38. 140. 271. | Run
74.
273.
39.
136.
173.
41.
236.
172.
240.
37.
38. | Table V. Continued | 200 | 0.0268
0.0773
0.0868
0.0868
0.1182
0.1215
0.1228
0.1328
0.1338
0.1338
0.1541
0.1541 | 9
0
0 | 0.4637
0.5184
0.5188
0.5181
0.5364
0.5137
0.5249
0.6229
0.603
0.6063
0.6063
0.6063
0.6063 | |-------
---|-------------|--| | 0000 | 0.0632
0.1000
0.0899
0.1346
0.1346
0.1393
0.1395
0.1508
0.1508
0.1507
0.1507
0.1501
0.1501 | 70000 | + | | CDogg | 0.0347
0.0846
0.08809
0.08809
0.1232
0.1315
0.1296
0.1406
0.1425
0.1425
0.1540 | CD961 | | | CPoka | | CP980 | | | CP963 | | CP279 | | | CP262 | , , , , , , , , , , , , , , , , | CP278 | 0.5895
0.6209
0.6344
0.6332
0.6121
0.6087
0.6107
0.5161
0.5797
0.5782
0.5782 | | CP261 | -0.1783
-0.1543
-0.1435
-0.1435
-0.1636
-0.1636
-0.1530
-0.1589
-0.1589
-0.1181
-0.1349
-0.1349 | CP277 | 0.5650
0.6186
0.5887
0.6174
0.6151
0.6098
0.6201
0.5928
0.5928
0.5928
0.5692 | | CP260 | -0.1999
-0.2064
-0.1840
-0.1977
-0.2279
-0.2269
-0.2211
-0.1997
-0.1697
-0.1831
-0.1912 | CP276 | 0.5208
0.5471
0.5695
0.5570
0.5568
0.5565
0.5966
0.5498
0.5637
0.5776
0.5776 | | CP259 | -0.2964
-0.3054
-0.3125
-0.3016
-0.3451
-0.3388
-0.3389
-0.3399
-0.3271
-0.3160
-0.2792
-0.2018 | CP275 | 0.4271
0.4772
0.4780
0.4892
0.5119
0.5020
0.5034
0.5275
0.4953
0.5069
0.5069
0.5069 | | CP258 | -0.4826
-0.5065
-0.5078
-0.5077
-0.516
-0.5200
-0.4894
-0.4171
-0.4144
-0.4329
-0.3657 | CP274 | -0.1659
-0.1925
-0.1925
-0.1795
-0.281
-0.2284
-0.2284
-0.2326
-0.2326
-0.2326
-0.2135
-0.2135
-0.2145 | | CP257 | -0.8008
-0.7352
-0.7352
-0.7295
-0.6990
-0.6842
-0.6842
-0.6842
-0.6842
-0.6842
-0.6842
-0.68319
-0.6319
-0.6319 | CP273 | 0.0219
0.0275
0.1144
0.0801
0.0904
0.1010
0.1281
0.1472
0.1472
0.1313 | | CP248 | 0.3084
0.3518
0.3449
0.3596
0.3734
0.3734
0.3794
0.3798
0.3798
0.3798
0.3798
0.3769
0.3769 | CP272 | -0.1616
-0.1768
-0.1938
-0.1804
-0.2307
-0.2180
-0.2180
-0.217
-0.217
-0.1946
-0.2772
-0.1946 | | CP247 | 0.3225
0.3726
0.3608
0.3778
0.3897
0.3917
0.3956
0.3956
0.3812
0.3836
0.3739
0.3739 | CP271 | -0.1912
-0.2058
-0.1881
-0.1940
-0.2446
-0.2401
-0.2411
-0.228
-0.228
-0.2207
-0.2267
-0.2267 | | CP246 | 0.1918
0.2239
0.2176
0.2274
0.2541
0.2540
0.2546
0.2546
0.2563
0.2563
0.2563 | CP270 | -0.1165
-0.0946
-0.0946
-0.1078
-0.1162
-0.1172
-0.1182
-0.1007
-0.0106
-0.0949
-0.0726
-0.0726
-0.0726 | | CP245 | 0.0834
0.1219
0.1005
0.1005
0.1251
0.1356
0.1460
0.1374
0.1328
0.1328 | CP269 | -0.0484
-0.0089
-0.0071
-0.0013
-0.0288
-0.0326
-0.0338
-0.0541
-0.0531
-0.0541
-0.0531
-0.0541
-0.061
-0.061 | | CP233 | 0.4926
0.5570
0.5465
0.5794
0.5603
0.5657
0.5649
0.5473
0.5508
0.5471
0.5508 | CP268 | 0.0150
0.0482
0.0685
0.0598
0.0895
0.08871
0.0880
0.1103
0.1111
0.1285
0.1329
0.1329 | | Run | 74.
273.
39.
136.
173.
41.
236.
172.
240.
37.
272.
38.
140. | Run | 74. 273. 39. 136. 173. 41. 240. 6272. 6272. 6272. 6272. 6271. 6271. 6271. 6271. 6271. 6271. 6271. 6271. 6271. 6271. 6271. 6271. 6271. 6273. | | CP284 | 0.5336
0.5415
0.5539
0.5539
0.5284
0.5192
0.5192
0.5334
0.4940
0.5099
0.4948
0.4948 | |-------|--| | Run | 74.
273.
39.
136.
173.
41.
236.
37.
272.
38.
38. | Table VI. Pressure Coefficients for l/h=4.4 Cavity With Front Blocks | CP10 | | CP37 | 0.0022
0.0022
-0.0148
-0.0043
0.0012
0.00123
0.0123
0.0110
0.01124
0.0110 | |----------------------------|---|----------------------------|--| | CPq | 0.0000000000000000000000000000000000000 | CP36 | -0.0103
-0.0221
-0.0029
-0.016
-0.0103
-0.0032
-0.0032
-0.0039
-0.0041
-0.0039
-0.0041
-0.0039
-0.0039 | | CP8 | -0.0
-0.0
-0.0
-0.0
-0.0
-0.0
-0.0
-0.0 | CP35 | 0.0038
0.0028
0.0028
0.0028
0.0020
0.0027
0.0080
0.0141
0.0089
0.0161
0.0149 | | CP7 | 6.10
6.10
6.11
6.11
6.11
6.11
6.11
6.11 | CP34 | -0.0116
0.0009
-0.0025
-0.0025
-0.0018
0.0032
0.0032
0.0091
0.0111 | | cP6 | -0.1675
-0.1702
-0.1606
-0.1649
-0.1955
-0.1972
-0.2014
-0.2014
-0.2014
-0.2014
-0.2019
-0.2283
-0.2283
-0.2280
-0.3676 | CP33 | -0.0217
-0.0133
-0.0049
-0.0123
-0.0020
0.0009
-0.0042
0.0064
0.0064
0.0063
0.0043
0.0131 | | l CP5 | -0.2374
-0.2026
-0.1955
-0.2466
-0.2339
-0.2339
-0.2504
-0.2542
-0.3733
-0.3733 | CP21 | -0.0070
-0.0357
-0.0078
0.0011
0.0004
0.0131
-0.0035
0.0053
-0.004
-0.0131
0.0053 | | cP4 | -0.1863
-0.2145
-0.2304
-0.2593
-0.2535
-0.2948
-0.2840
-0.2876
-0.4192
-0.4192
-0.43335 | CP20 | -0.0278
0.0064
-0.0132
-0.0179
-0.0073
-0.0015
0.0018
0.0001
0.0148
0.0136
0.0136 | | : CP3 | -0.2937
-0.295
-0.295
-0.2924
-0.3576
-0.4134
-0.4347
-0.4545
-0.490
-0.4958
-0.3360 | CP19 | -0.0274
-0.0272
-0.0192
-0.0132
-0.0122
-0.0182
-0.0109
-0.0109
-0.0145
-0.0071 | | CP2 | -0.2152
-0.2249
-0.2944
-0.2944
-0.3254
-0.3789
-0.2789
-0.2960
-0.2960
-0.2960
-0.2972
-0.2772
-0.2177 | CP18 | -0.0209
-0.0209
-0.0202
-0.0178
-0.0153
-0.0119
-0.0103
-0.0108
-0.0120
-0.0120 | | CP1 | 0.8143
0.9687
0.9355
0.9742
1.1003
1.1292
1.1191
1.1382
1.1524
1.1538
1.1566
1.1566
1.1566
1.1566
1.1566 | CP17 | -0.0455
-0.0435
-0.0354
-0.0254
-0.0254
-0.0215
-0.0203
-0.026
-0.0157
-0.0160 | | $T_{t\infty}$ | 110.8
96.1
80.4
80.6
109.7
116.2
99.0
118.8
119.1
113.6
120.0
90.5
108.9
123.1 | CP16 | -0.0473
-0.0530
-0.0410
-0.0410
-0.0335
-0.0336
-0.0287
-0.0290
-0.0310
-0.0266
-0.0266
-0.0266 | | ∞b | 69.5
189.8
193.3
410.9
258.7
539.6
611.9
276.7
566.0
655.6
328.4
564.9
323.6 | CP15 | | | $p_{l} \propto$ | 1201.4
963.8
972.7
2085.6
877.7
1849.8
877.4
1793.9
2083.1
895.7
976.2
1686.3 | CP14
-0.0329 | | | 6 p_{∞} | 756.5
761.2
761.2
1636.5
174.7
1219.4
1380.8
547.0
1118.0
1300.8
523.6
575.3
997.7 | CP13
-0.0960
-0.0487 | -0.0307
-0.0288
-0.0223
-0.0223
-0.0155
-0.0156
-0.0142
-0.0038 | | $R_{\infty}\times 10^{-6}$ | 1.0
1.5
1.6
3.3
3.3
3.3
3.3
3.3
3.3
1.7
1.7 | CP12
-0.0659
-0.0569 | -0.0625
-0.0552
-0.0523
-0.0444
-0.0482
-0.0415
-0.0413
-0.0334
-0.0371
-0.0281
0.0051 | | M_{∞} | 0.30
0.60
0.60
0.80
0.80
0.85
0.85
0.85
0.95
0.90 | CP11
-0.1098
-0.0815 | -0.0830
-0.0701
-0.0738
-0.0648
-0.0695
-0.0583
-0.0583
-0.0527
-0.0530
-0.0440 | | Run | 61.
256.
220.
220.
47.
52.
52.
54.
54.
59.
120.
53. | ~ | 220 | Table VI. Continued | CP108 | 0.0272
-0.0223
-0.0352
-0.0311
-0.0272
-0.0255
-0.0168
-0.0166
-0.0234
-0.0181
-0.0261
-0.0261 | 0.0246
0.0285
0.0285
0.0196
0.0106
0.0106
0.0107
0.0194
0.0155
0.0213
0.0285 | |---------
--|---| | CP107 C | -0.0079 0
-0.0309 -0
-0.0293 -0
-0.0243 -0
-0.0254 -0
-0.0180 -0
-0.0180 -0
-0.0164 -0
-0.0154 -0
-0.0164 -0
- | 0.0295
0.0137
0.0137
0.0130
0.0057
0.0057
0.0057
0.0158
0.0091
0.0257
0.0289
0.0182 | | CP72 C | 0.0032 - C
-0.0288 - C
-0.0290 - C
-0.0332 - C
-0.0184 - C
-0.0143 - C
-0.0113 - C
-0.0136 | CP126
0.0159
-0.0108
-0.0329
-0.0329
-0.0259
-0.0151
-0.0102
-0.0103
-0.0078
-0.0039
-0.0078 | | CP71 | -0.0019
-0.0298
-0.0200
-0.0233
-0.0256
-0.0133
-0.0106
-0.0152
-0.0154
-0.0154
-0.0154
-0.0154
-0.0154 | CP125 -0.0289 -0.0351 -0.0350 -0.0390 -0.0342 -0.0342 -0.0277 -0.0234 -0.0163 -0.0260 -0.0166 | | CP70 | 0.0506 - 0.0100 - 0.0067 - 0.0098 - 0.0098 - 0.0098 0.0102 0.0238 0.0115 0.0238 0.0236 0.0236 0.0236 0.0236 0.0236 | CP124
0.0049
-0.0267
-0.0338
-0.0210
-0.0255
-0.0145
-0.0145
-0.0114
-0.0124
-0.0124 | | CP69 | -0.0053
-0.0087
0.0077
0.0076
-0.0012
0.0144
0.0188
0.0092
0.0139
0.0200
0.0200 | CP123 -0.0429 -0.0588 -0.0314 -0.0419 -0.0373 -0.0373 -0.0373 -0.0374 -0.0269 -0.0269 -0.0288 | | CP68 | -0.0050
-0.0542
-0.0372
-0.0507
-0.0507
-0.0447
-0.0462
-0.0322
-0.0328
-0.0338
-0.0291
-0.0291 | CP121 -0.2124 -0.0744 -0.0145 -0.0384 -0.0322 -0.0224 -0.0224 -0.0224 -0.0224 -0.0022 -0.0032 -0.0032 -0.0032 -0.0032 -0.0072 | | CP67 | -0.0062 -0.0361 -0.0368 -0.0308 -0.0308 -0.0314 -0.0229 -0.0217 -0.0176 -0.0176 -0.0173 -0.0132 | CP118 0.0122 -0.0350 -0.0267 -0.0281 -0.0281 -0.0292 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 | | CP54 | 0.0433 - 0.0209 - 0.0320 - 0.0320 - 0.0185 - 0.0190 - 0.0275 - 0.0213 - 0.0268 - 0.0316 - 0.0320 - 0.0320 | CP117 -0.0149 -0.0355 -0.0274 -0.0283 -0.0283 -0.0299 -0.0269 -0.0160 -0.0197 -0.0183 | | CP47 | 0.0523
0.0265
0.0099
0.0104
0.0167
0.0257
0.0259
0.0261
0.0261
0.0263
0.0222
0.0232 | CP115 -0.2278 -0.0639 -0.0513 -0.0421 -0.0375 -0.0177 -0.0246 -0.0178 -0.0208 | | CP43 | -0.1063
-0.0428
-0.0150
-0.0256
-0.0203
-0.0257
-0.0087
-0.0104
-0.0085
-0.0085
-0.0085
-0.0085
-0.0085
-0.0085 | CP114 -0.1341 -0.0467 -0.0467 -0.0524 -0.0327 -0.0144 -0.0123 -0.0156 -0.0156 -0.0156 -0.0156 | | CP49 | 1000004010 | CP113
-0.1330
-0.0538
-0.0550
-0.0525
-0.0415
-0.0223
-0.0231
-0.0235
-0.0246
-0.0235
-0.0246
-0.0235
-0.0246
-0.0267 | | CD41 | 72200000000000000000000000000000000000 | CP112 -0.0405 -0.0404 -0.0494 -0.0413 -0.0326 -0.0263 -0.0263 -0.0263 -0.0263 -0.0263 -0.0263 | | 2010 | 0.0590
-0.0590
-0.0239
-0.0299
-0.0299
-0.0027
-0.0017
-0.0011
-0.0012
-0.0020
-0.0020
-0.0020
-0.0020
-0.0020 | CP1111 -0.0187 -0.0473 -0.0529 -0.0432 -0.0463 -0.0366 -0.0372 -0.0372 -0.0365 | | Ç | 0.0017
0.0018
0.0018
0.0018
0.0019
0.0049
0.0047
0.0047
0.0047
0.0047
0.0047 | CP110
0.0003
-0.0671
-0.0254
-0.0491
-0.0444
-0.0358
-0.0358
-0.0360
-0.0439
-0.0360
-0.0360
-0.0375
-0.0275 | | (| C.P.38
0.0123
0.0088
0.0086
0.0098
0.0140
0.0134
0.0134
0.0135
0.0186 | CP109
0.0061
-0.0369
-0.0564
-0.0446
-0.0389
-0.0389
-0.0383
-0.0318
-0.0318
-0.0421
-0.0424
-0.0426 | | | 61. 256 220. 256 57. 57. 57. 57. 57. 59. 120. 53. 60. | Run
61.
256.
220.
47.
57.
52.
48.
258.
258.
49.
59.
120.
53. | Table VI. Continued | | -0.0221
-0.0388
-0.0255
-0.0355
-0.0314
-0.0314
-0.0254
-0.0198
-0.0199
-0.0109
-0.0109
-0.0104
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.0194
-0.019 | CP170
0.0183
0.0801
0.0883
0.0740
0.0816
0.0911
0.0902
0.1179
0.1179
0.1179 | |---------
---|--| | | CP150
-0.0007
-0.0429
-0.0104
-0.0273
-0.0277
-0.0121
-0.0129
-0.0129
-0.0024
-0.0024 | CP169 -0.1129 0.0244 0.0650 0.0471 0.0657 0.0665 0.0667 0.0867 0.0818 0.0818 0.0954 0.0954 | | | 0.0449
0.0678
0.0678
0.0326
0.0355
0.0314
0.0314
0.0314
0.0314
0.0207
0.0135
0.0013
0.0013 | CP168 -0.1248 0.0199 0.0494 0.0304 0.0304 0.0532 0.0468 0.0672 0.06832 0.06832 0.06832 0.06832 0.06832 | | | 0.0248
-0.0303
-0.0047
-0.0203
-0.0183
-0.0183
-0.0056
-0.0096
-0.0096
-0.0062 | CP167 -0.1979 -0.00042 -0.0034 -0.0138 -0.0272 -0.0340 -0.0339 -0.0330 -0.0322 -0.0322 -0.0362 | | CD147 | 11111111 | CP166 -0.2102 -0.0283 -0.0191 -0.0158 -0.0036 0.0020 0.0148 0.0164 0.0117 0.0248 | | CP141 | , , , , , , , , , , , , , , , , , , | CP165 -0.2433 -0.0350 -0.0315 -0.0315 -0.0243 -0.0243 -0.0243 -0.0094 -0.0093 -0.00114 -0.0074 0.0002 | | CP140 | 1 | CP164 -0.1962 -0.0371 -0.0376 -0.0238 -0.0282 -0.0202 -0.0100 -0.0080 -0.0090 -0.0036 -0.0036 | | 3 CP139 | | CP163 -0.1732 -0.0371 -0.0428 -0.0352 -0.0351 -0.0195 -0.0216 -0.0128 -0.0138 -0.0138 -0.0138 | | , CP138 | -0.0057
-0.0545
-0.0143
-0.0374
-0.0384
-0.0188
-0.0158
-0.0159
-0.0159
-0.0159
-0.0170 | CP162 -0.0915 -0.0473 -0.0427 -0.0412 -0.0324 -0.0374 -0.0125 -0.0125 -0.0128 -0.0128 | | ; CP137 | -0.0282
-0.0462
-0.0364
-0.0384
-0.0345
-0.0256
-0.0262
-0.0239
-0.0239
-0.0239
-0.0239
-0.0239 | CP161 -0.0760 -0.0418 -0.0432 -0.0438 -0.0438 -0.0281 -0.0281 -0.0246 -0.0248 -0.0373 -0.0196 | | ; CP136 | -0.0017
-0.0514
-0.0210
-0.0369
-0.0339
-0.0382
-0.0186
-0.0162
-0.0162
-0.0167
-0.0097
-0.0063 | CP159 -0.0524 -0.0583 -0.0247 -0.0342 -0.0377 -0.0377 -0.0259 -0.0119 -0.0105 | | (CP135 | -0.0061
-0.0364
-0.0360
-0.0338
-0.0297
-0.0159
-0.0179
-0.0179
-0.0179
-0.0144
-0.0063
-0.0063 | CP158 0.0374 -0.0379 -0.0329 -0.0305 -0.0200 -0.0208 -0.0143 -0.0175 -0.0071 -0.0071 -0.0071 | | ; CP134 | 0.0584
0.0205
-0.0176
-0.0091
-0.0068
-0.0060
0.0014
-0.0056
0.0038
-0.0103
0.0046 | CP157 -0.0185 -0.0232 -0.0232 -0.0021 -0.0150 -0.0122 -0.0036 -0.0036 -0.0036 -0.0036 -0.0036 -0.0036 | | CP133 | -0.0058
-0.0077
-0.0116
-0.0069
-0.0050
-0.0050
-0.0050
-0.0033
-0.0019
0.0000 | 0.0032
-0.0199
-0.0319
-0.0319
-0.0330
-0.0267
-0.0128
-0.0128
-0.0128
-0.0161
-0.0060
-0.0060
-0.0060 | | CP132 | 0.038
0.0036
0.0036
0.0017
0.0017
0.0104
0.0109
0.0059
0.0132
0.0123
0.0204
0.0189 | CP153 -0.0394 -0.0324 -0.0328 -0.0371 -0.0371 -0.0218 -0.0242 -0.0148 -0.0218 -0.0228 -0.0198 -0.0198 -0.0198 | | CP131 | -0.0072
-0.0099
0.0039
0.00013
-0.0023
0.0039
0.0093
0.0072
0.0073
0.0073
0.0073
0.0073
0.0073 | CP152 -0.0165 -0.0467 -0.01348 -0.0343 -0.0342 -0.0310 -0.0175 -0.0175 -0.0164 -0.0164 -0.0067 -0.0067 -0.0067 | | Run | 61.
256.
220.
220.
57.
52.
52.
54.
54.
59.
120.
53. | 61. 256. 220. 47. 57. 57. 52. 58. 52. 48. 54. 49. 55. 120. 55. 59. 59. 59. 59. 59. 59. 59. 59. 59 | Table VI. Continued | CP186 | 0.2999 0.2763 0.2883 0.28825 0.2986 0.2988 0.3083 0.3069 0.3150 0.3250 0.3360 | CP204 | 0.0045
0.0638
0.0216
0.0561
0.0562
0.0343
0.0785
0.0870
0.0519
0.0762
0.0762 | |---------|--|---------|--| | | 0.1725
0.1917
0.1989
0.2013
0.2084
0.2278
0.2278
0.2278
0.2255
0.2297 | CP203 | -0.0883
0.0272
0.0272
0.0420
0.0374
0.0370
0.0625
0.0300
0.0463
0.0463
0.0463 | | CP184 (| 0.1027
0.1410
0.1466
0.1422
0.1460
0.1586
0.1575
0.1755
0.1779
0.1779
0.1916
0.1925 | CP202 | -0.1395
-0.0025
0.0150
0.0401
0.0405
0.0590
0.0347
0.0481
0.0591
0.0591 | | CP183 (| 0.0037
0.0966
0.1094
0.0995
0.1069
0.1251
0.1352
0.1352
0.1355
0.1355
0.1356
0.1417 | CP201 | 0.0013
0.0013
0.0212
0.0213
0.0213
0.0342
0.0467
0.0275
0.0347
0.0467
0.0347 | | CP182 (| -0.0476 -0.0725 -0.0803 -0.0803 -0.0873 -0.0873 -0.0974 -0.1013 -0.1149 -0.1191 -0.1191 -0.1191 -0.1118 -0.1118 -0.1118 -0.1455 -0.1455 -0.1455 -0.0725
-0.0725 -0.072 | CP200 | -0.2098
-0.0210
0.0065
0.0039
0.0132
0.0155
0.0371
0.0270
0.0352
0.0352
0.0353 | | CP181 | -0.1184 -0.0514 -0.0514 -0.0652 -0.0479 -0.0630 -0.0887 -0.0887 -0.0921 -0.0930 -0.0000 -0.0000 -0.0000 -0.0000 -0.000 -0.000 -0.000 -0.000 -0.0000 -0 | CP199 | -0.2705
-0.0423
-0.0170
-0.0004
-0.0003
0.0095
0.0171
0.0231
0.0231
0.0351
0.0462
0.0333 | | CP180 | -0.1557 - 0.0309 0.0494 0.0193 0.0393 0.0538 0.0642 0.0682 0.0582 0.0679 0.0679 0.0679 0.0811 0.0750 0.0861 | CP198 | -0.1969
-0.02188
-0.0252
-0.0257
-0.0037
-0.0206
0.0206
0.0238
0.0238
0.0369
0.0369 | | CP179 | -0.2373 -0.0165 -0.0085 -0.0085 -0.0073 0.0067 0.0187 0.0209 0.0314 0.0318 0.0348 0.0348 0.0348 0.0508 | CP197 | -0.2231
-0.0216
-0.0561
-0.0417
-0.013
0.0016
0.0063
0.0049
0.0049
0.0154
0.0154 | | CP178 | -0.2210 -0.0365 -0.0365 -0.0267 -0.0267 -0.0038 0.0002 0.0193 0.0193 0.0141 0.0220 0.0122 0.0315 0.0315 | CP196 | -0.2285
-0.0422
-0.0301
-0.0485
-0.0133
-0.0065
0.0065
0.0044
0.0008
0.0044
0.0008 | | CP177 | -0.2114 -0.0266 -0.0266 -0.0457 -0.0457 -0.0203 -0.0003 -0.0005 -0.0005 -0.0025 -0.0026 -0.0026 -0.00243 -0.0024 -0.00 | CP195 | -0.2416
-0.0388
-0.0553
-0.0566
-0.0263
-0.0054
-0.0062
-0.0062
-0.0073
-0.0073
-0.0073 | | CP176 | -0.1552
-0.0405
-0.0301
-0.0303
-0.024
-0.0148
-0.0025
-0.0025
-0.0025
-0.0025
-0.0025
-0.0025
-0.0025 | CP194 | -0.1993
-0.0377
-0.0399
-0.0586
-0.0214
-0.0014
-0.0031
-0.00031
-0.0025
-0.0025
-0.0025
-0.0025
-0.0025 | | CP175 | -0.1148
-0.0434
-0.0405
-0.0328
-0.0328
-0.0134
-0.0070
-0.0070
-0.0070
-0.0070
-0.0070 | CP193 | | | CP174 | -0.0493
-0.052
-0.0252
-0.0233
-0.0295
-0.0133
-0.0105
-0.0067
-0.0098
-0.0098 | CP191 | | | CP173 | 0.2998
0.2725
0.2758
0.2753
0.2673
0.2870
0.2856
0.3023
0.3045
0.30164
0.3164 | CP190 | | | CP172 | 0.2192
0.1825
0.1964
0.1696
0.1672
0.1779
0.1938
0.1938
0.1938
0.2186 | CP180 | • | | CP171 | 0.0482
0.0836
0.0836
0.1081
0.1080
0.1017
0.1293
0.1377
0.1334
0.1334
0.1354 | 00100 | -0.2002
-0.0107
-0.0201
-0.0211
0.0004
0.0077
0.0202
0.0213
0.0139
0.0197
0.0198 | | Run | | <u></u> | 61.
226.
220.
47.
57.
52.
48.
258.
258.
54.
49.
59.
120. | Table VI. Continued | CP220 | -0.0710
0.0603
0.0916
0.0998
0.1037
0.1062
0.0768
0.1224
0.1366
0.1213
0.1236
0.1213
0.1236 | CP937 | 0.1281
0.1464
0.1731
0.1745
0.1689
0.1898
0.1767
0.2018
0.2089
0.2153
0.2208
0.2300 | |------------|---|-------|---| | CP219 | -0.2039 0.0035 0.0357 0.0356 0.0459 0.0708 0.0782 0.0802 0.0858 0.0955 | CP236 | | | CP218 | -0.1968
-0.0003
0.0399
0.0283
0.0467
0.0522
0.0354
0.0681
0.0747
0.0699
0.0849
0.0849 | CP235 | 0.1709
0.1950
0.2035
0.2149
0.2149
0.2452
0.2459
0.2545
0.2567
0.2657 | | CP217 | -0.2315
-0.0072
0.0096
0.0186
0.0274
0.0335
0.0146
0.0435
0.0550
0.0478
0.0595
0.0595 | CP234 | 0.0593
0.1116
0.1327
0.1312
0.1365
0.1616
0.1629
0.1669
0.1678
0.1773
0.1773 | | CP216 | -0.1898
0.0039
0.0123
0.0220
0.0350
0.0329
0.0195
0.0483
0.0528
0.0459
0.0488
0.0575 | CP233 | 0.0685
0.1859
0.2006
0.2229
0.2524
0.2524
0.2522
0.2667
0.2565
0.2760 | | CP215 | -0.2498
-0.0263
-0.0295
-0.0318
-0.0031
0.0027
0.0185
0.0185
0.0195
0.0195
0.0348 | CP232 | 0.1013
0.1620
0.1579
0.1941
0.2223
0.1771
0.2137
0.2197
0.2197
0.2146 | | CP214 | -0.2456
-0.0348
-0.0331
-0.0024
-0.0024
-0.0011
-0.0181
0.0195
0.0168
0.0168
0.0128
0.0128 | CP231 | 0.0564
0.1244
0.1408
0.1872
0.1685
0.1047
0.1951
0.1965
0.1965
0.1965
0.1965
0.1965 | | CP213 | -0.2855
-0.0380
-0.0383
-0.0373
-0.0079
-0.0001
0.0126
0.0141
0.0145
0.0145 | CP230 | 0.1042
0.1563
0.1453
0.1866
0.21807
0.2133
0.1699
0.2049
0.2026
0.2030
0.2050
0.2013 | | CP212 |
-0.2147
-0.0142
-0.00210
-0.0035
-0.0080
0.0115
0.0084
0.0084
0.0030
0.0044
0.0230 | CP229 | 0.0586
0.1537
0.1522
0.1716
0.1760
0.2069
0.1931
0.2015
0.2084
0.2084
0.2176 | | | -0.0300
0.1086
0.1088
0.1125
0.1233
0.1298
0.1408
0.1550
0.1697
0.1617
0.1617 | CP228 | 0.0694
0.1450
0.1916
0.1623
0.1832
0.1950
0.2045
0.2071
0.2358
0.2358
0.2502
0.2694 | | CP210 | 0.0923
0.0519
0.0593
0.0740
0.0825
0.0617
0.0984
0.1077
0.0952
0.1000
0.1041 | CP227 | 0.0862
0.1830
0.1810
0.1586
0.1843
0.1910
0.2301
0.2114
0.2104
0.2253
0.2253
0.2253 | | CP209 | 0.0521
0.0029
0.0029
0.0196
0.0303
0.0306
0.0486
0.0624
0.0547
0.0515
0.0602 | CP226 | 0.0917
0.1714
0.1993
0.1696
0.1958
0.2002
0.2267
0.2313
0.2332
0.2529
0.2422
0.2529 | | | 0.0100
0.0100
0.0010
0.0235
0.0221
0.0426
0.0402
0.0402
0.0395
0.0395 | CP225 | 0.0396
0.1819
0.2117
0.2088
0.2207
0.2414
0.2499
0.2521
0.2635
0.2740
0.2555
0.2740
0.2556 | | CP207 | -0.0123
-0.0254
-0.0254
0.0030
0.0238
0.0238
0.0233
0.0164
0.0324
0.0324 | CP223 | 0.0396
0.1382
0.1606
0.1522
0.1636
0.1719
0.1791
0.2001
0.2165
0.2125
0.2354 | | CP206 | -0.0166
-0.0190
-0.0336
0.0004
0.0193
0.0184
0.0184
0.0189
0.0139
0.0145
0.0259 | CP222 | -0.0308
0.0878
0.1553
0.1228
0.1384
0.1445
0.1728
0.1728
0.1789
0.1786
0.1786
0.2011 | | CP205 | 0.1336
0.1341
0.1579
0.1622
0.1763
0.1525
0.2013
0.2013
0.1746
0.1855
0.2003
0.2016 | CP221 | -0.0440
0.0974
0.0773
0.0994
0.1102
0.1190
0.1113
0.1363
0.1462
0.1398
0.1417
0.1387
0.1593 | | Run
61. | 256.
220.
47.
47.
52.
52.
53.
54.
59.
120.
53. | m Run | 61. 256. 220. 220. 256. 27. 47. 57. 52. 258. 258. 54. 49. 59. 120. 53. 60. | Table VI. Continued | | | | 220200000000000000000000000000000000000 | |---------|--|--------|--| | CP257 | -0.1798
-0.1279
-0.1675
-0.2621
-0.2149
-0.1754
-0.1651
-0.2049
-0.1833
-0.1841
-0.1860 | CP273 | -0.4443
-0.0963
-0.0031
-0.0412
-0.0402
-0.0621
-0.023
-0.023
-0.0283
-0.0269
-0.0269
-0.0269 | | CP252 | | CP272 | 0.0174 -0.0517 -0.0525 -0.0525 -0.0671 -0.0444 -0.0673 -0.0673 -0.0521 -0.0533 -0.0533 | | | 0.0240
0.0324
0.0324
0.0281
0.0445
0.0628
0.0628
0.0628
0.0714
0.0714
0.0882 | CP271 | -0.0594
-0.0772
-0.0364
-0.0599
-0.0897
-0.0608
-0.0637
-0.0693
-0.0645
-0.0645
-0.0645 | | | -0.2213 -0.00180 -0.0180 -0.0178 -0.00178 -0.0015 -0.0015 -0.00237 -0.0258 -0.0200 -0.0245 -0.0308 -0.0308 | CP270 | -0.0362
-0.0541
-0.0139
-0.0402
-0.0773
-0.0773
-0.0317
-0.0573
-0.0573
-0.0573
-0.0573
-0.0573
-0.0573
-0.0573 | | - | -0.20210.05580.05580.03240.02650.02650.0260 -0.00530.00530.00100.00100.00100.00100.00100.001380.01380.0108 | CP269 | 0.0574
-0.0362
-0.0161
-0.0158
-0.0320
-0.0334
-0.0064
-0.0043
-0.0149
-0.0089
-0.0028
-0.0028 | | | -0.0770 - 0.0426 - 0.0533 - 0.0532 - 0.0547 - 0.0547 - 0.0786 - 0.0622 - 0.0622 - 0.0622 - 0.0786 - 0.0622 - 0.0786 - 0.0786 - 0.0781 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.0731 - 0.07331 | CP268 | -0.0752
-0.0273
-0.0113
-0.0122
-0.0130
-0.0173
-0.0131
0.0189
0.0049
0.0132
0.0282 | | | -0.19310.0051 0.0034 -0.0058 0.0167 0.0239 0.0310 0.0383 0.0318 0.0318 0.0348 0.0355 | CP267 | -0.1054
-0.0278
-0.0058
-0.0155
-0.0128
-0.0071
-0.0090
0.0186
0.0113
0.0120
0.01303
0.0120 | | CP246 (| -0.2246 -0.0564 -0.0564 -0.0554 -0.0554 -0.0525 -0.0314 -0.0314 -0.0279 -0.0279 -0.0186 -0.0142 -0.0142 -0.0240 | CP266 | -0.0655
-0.0165
-0.0133
-0.0184
-0.0037
-0.0035
0.0130
0.0126
0.0126
0.0129
0.0094 | | CP245 (| -0.1558 -0.0486 -0.0669 -0.0669 -0.0612 -0.0385 -0.0385 -0.0255 -0.0253 -0.0233 -0.0233 -0.0217 -0.0219 -0.0217 | CP265 | -0.1140
-0.0351
-0.0215
-0.0286
-0.0117
-0.0019
-0.0022
0.0073
0.0018
0.0032
0.0032 | | CP244 (| 0.2845 - 0.2317 - 0.2486 - 0.2486 - 0.2454 - 0.2565 - 0.2565 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2658 - 0.2668
- 0.2668 - 0.2 | CP264 | -0.1023
-0.0276
-0.0206
-0.0300
-0.0127
-0.0100
0.0024
0.0024
0.0021
0.0056
0.0056
0.0056 | | CP243 (| 0.1711
0.2005
0.2005
0.2152
0.2135
0.2147
0.2324
0.2456
0.2544
0.2568
0.2568 | CP263 | | | CP242 (| 0.2042
0.1961
0.2119
0.1985
0.2022
0.2145
0.2122
0.2383
0.2387
0.2387
0.2387
0.2387
0.2387 | CP962 | -0.0108
-0.0200
-0.0203
-0.0283
-0.0286
-0.0296
0.0294
-0.0118
0.0198
0.0012 | | CP241 (| 0.1122
0.1497
0.1765
0.1612
0.1848
0.1755
0.1960
0.2016
0.2016
0.2058
0.2251 | CP961 | | | CP240 (| 0.1736
0.1673
0.1646
0.1559
0.1597
0.1808
0.1685
0.1924
0.1928
0.1928
0.1933
0.1933 | CD960 | 0.00348
0.0041
0.0041
0.0041
0.00575
0.0002
0.0008
0.0008
0.0083
0.0083
0.0083
0.0083 | | CP239 (| 0.1368
0.1414
0.1628
0.1613
0.1488
0.1703
0.1570
0.1816
0.1855
0.1866
0.1866
0.1866
0.1866 | 900 | 0.0294
-0.0554
-0.0554
-0.0347
-0.0599
-0.0629
-0.0629
-0.0275
-0.0275
-0.0218
-0.0218
-0.0349
-0.0531
-0.0531 | | CP238 (| 0.1781
0.1651
0.1653
0.1653
0.1653
0.1644
0.1838
0.1739
0.1951
0.1962
0.1962
0.1982
0.2203 | i
G | 0.0227
-0.0725
-0.0725
-0.0725
-0.0880
-0.0557
-0.0557
-0.0657
-0.0657
-0.0657 | | Run (| 61. 62. 220. 220. 57. 52. 52. 52. 54. 54. 59. 120. 53. | I | Kun 256. 256. 250. 447. 557. 557. 558. 554. 69. 553. | Table VI. Concluded | CP284 | 0.1446
0.2302
0.2302
0.2328
0.2441
0.2578
0.2578
0.2600
0.2827
0.2708
0.2638
0.2638 | |-------|--| | CP283 | 0.2551
0.2178
0.2004
0.2018
0.2281
0.2492
0.2046
0.2518
0.2401
0.2434
0.2560
0.2516 | | CP282 | 0.3213
0.2350
0.2124
0.2135
0.2397
0.2520
0.2577
0.2839
0.2250
0.2250 | | CP281 | 0.2597
0.2501
0.2404
0.3161
0.2795
0.2899
0.2669
0.2660
0.2657
0.2657 | | CP280 | 0.3233
0.2635
0.2635
0.3367
0.3379
0.3332
0.3448
0.3260
0.3172
0.3172 | | CP279 | 0.2171
0.2981
0.3470
0.3225
0.3182
0.3287
0.3287
0.3383
0.3444
0.3357
0.3657 | | CP278 | 0.2701
0.3282
0.3660
0.3121
0.3397
0.3810
0.3810
0.3662
0.3665
0.3665
0.4029 | | CP277 | 0.3091 0.3326 0.3326 0.3370 0.2928 0.3301 0.4009 0.3161 0.3619 0.3619 0.3496 0.4545 | | CP276 | 0.2707
0.2856
0.3505
0.2464
0.2643
0.2437
0.3238
0.2904
0.3092
0.3187
0.3346
0.3656 | | CP275 | 0.2369
0.2461
0.2845
0.2344
0.2468
0.2468
0.2950
0.2693
0.2647
0.2867
0.2867
0.2862
0.3356 | | CP274 | -0.0162
-0.0603
-0.0251
-0.0598
-0.0733
-0.1085
-0.0429
-0.0427
-0.0697
-0.0487
-0.0530
-0.0416 | | Run | 61.
256.
220.
47.
57.
52.
48.
54.
49.
59.
120. | Table VII. Pressure Coefficients for l/h=11.7 Cavity With Front Blocks | CP10 | -0.0892
-0.0694
-0.0532
-0.0512
-0.0541
-0.0541
-0.0490
-0.0492
-0.0402
-0.0402 | CP37 | 0.0803
-0.0562
-0.0340
-0.0402
-0.0435
-0.0403
-0.0354
-0.0354
-0.0377
-0.0377 | CP113 | 0.0207 0.0207 0.0710 0.0874 0.0878 0.0987 0.0916 0.0919 0.1018 0.0850 | |------------------|--|------|---|-------|--| | $^{ m CP9}$ | -0.1058 -0 -0.0813 -0 -0.0844 -0 -0.0816 -0 -0.0663 -0 -0.0691 -0 -0.0693 -0 -0.0635 -0 -0.0635 -0 -0.0635 -0 -0.0635 -0 -0.0635 -0 -0.0635 -0 -0.0635 -0 -0.0635 -0 | CP36 | -0.0736 -0.0496 -0.0496 -0.0452 -0.02452 -0.02452 -0.0363 -0.0396 -0.0378 -0.0378 -0.0378 -0.0373 -0.0278 -0.0278 -0.0268 | CP112 | 0.0203
0.0526
0.0695
0.0671
0.0664
0.0667
0.0670
0.0688
0.0688
0.0688 | | CP8 | -0.1056 -0.0909 -0.0909 -0.0803 -0.0872 -0.08872 -0.08872 -0.08877 -0.08877 -0.08877 -0.08871 | CP35 | 0.1004
-0.0651
-0.0570
-0.0420
-0.0424
-0.0437
-0.0387
-0.0381
-0.0281
-0.0330 | CP111 | -0.0098
0.0188
0.0412
0.0187
0.0272
0.0238
0.0165
0.0205
0.0251
0.0125 | | CP7 | -0.1766 -0
-0.1416 -0
-0.1396 -0
-0.1573 -0
-0.1471 -0
-0.1581 -0
-0.1581 -0
-0.1530 -0
-0.1431 -0
-0.1713 -0
-0.1713 -0
-0.1713 -0
-0.1713 -0 | CP34 | -0.0877
-0.0545
-0.0545
-0.0289
-0.0330
-0.0249
-0.0270
-0.0284
-0.0270
-0.0284
-0.0270 | CP110 | -0.0369
-0.0275
-0.0134
-0.0249
-0.0265
-0.0269
-0.0310
-0.0363 | | CP6 | -0.1906 -0.1797 -0.1652 -0.2031 -0.1905 -0.1948 -0.2039 -0.2039 -0.2061 -0.2061 -0.2061 -0.2061 -0.3109 -0.3148 -0.3748 -0.3748 -0.3748 -0.1976 -0.3748 -0.3748 -0.1976 -0.3748 -0.3748 -0.1976 -0.1976 -0.3748 -0.3748 -0.1976 -0.1976 -0.3748 -0.1976 -0.1976 -0.3748 -0.1976 -0.1976 -0.3748 -0.1976 -0.1976 -0.1976 -0.3748 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976 -0.1976
-0.1976 -0.197 | CP33 | -0.0755
-0.0417
-0.0296
-0.0203
-0.0203
-0.0196
-0.0159
-0.0159
-0.0159 | CP109 | -0.1201
-0.0924
-0.0945
-0.0945
-0.0817
-0.0811
-0.0911
-0.0828
-0.0928
-0.0735 | | CP5 | -0.2291 -0.2156 -0.1979 -0.2579 -0.2376 -0.2376 -0.2569 -0.2569 -0.2569 -0.3810 -0.3897 | CP21 | -0.0808
-0.0420
-0.0145
-0.0134
-0.0158
-0.0209
-0.0126
-0.0170
-0.0185
-0.0136 | CP108 | -0.1909
-0.1533
-0.1304
-0.1302
-0.1223
-0.1203
-0.1149
-0.1107
-0.1107 | | CP4 | -0.2402 -0.2335 -0.2073 -0.2780 -0.2596 -0.2596 -0.3071 -0.2870 -0.4264 -0.4264 -0.4264 | CP20 | -0.0627
-0.0376
-0.0320
-0.0153
-0.0156
-0.0155
-0.0142
-0.0180
-0.0155
-0.0037 | CP107 | -0.2150
-0.1644
-0.1463
-0.1395
-0.1285
-0.1330
-0.1371
-0.1174
-0.1174
-0.1174
-0.1174
-0.1174 | | CP3 | -0.2805 -1-0.2885 -1-0.2885 -1-0.2885 -1-0.3821 -1-0.4109 -10.4457 -1-0.4878 -1-0.2890 | CP19 | -0.0791
-0.0439
-0.0279
-0.0355
-0.0236
-0.0251
-0.0233
-0.0233
-0.0233
-0.0215
-0.0215 | CP68 | 0.0062
0.0228
0.0362
0.0362
0.0299
0.0284
0.0247
0.0239
0.0239 | | CP2 | -0.3159 -1.0.2405 -0.3062 -0.3091 -0.3594 -0.2804 -0.2838 -0.3260 -0.3260 -0.3260 -0.3260 -0.31112 | CP18 | -0.0630
-0.0406
-0.0241
-0.0256
-0.0211
-0.0239
-0.0231
-0.0209
-0.0208
-0.0243
-0.0243 | CP67 | -0.1963
-0.1585
-0.1425
-0.1369
-0.1259
-0.1295
-0.1261
-0.1161
-0.1161
-0.1026 | | CP1 | 0.8365 - 0.9672 - 0.9877 - 1.1202 - 1.1140 - 1.1160 - 1.11576 - 1.11576 - 1.11576 - 1.11576 - 1.11933 - 1.1909 - 1.2322 | CP17 | -0.0907
-0.0539
-0.0345
-0.0303
-0.0317
-0.0442
-0.0263
-0.0263 | CP47 | -0.2212
-0.1725
-0.1472
-0.1362
-0.1258
-0.1172
-0.1172
-0.1172
-0.0018 | | $T_{ m t\infty}$ | = " = = = = = = = = = = = = = = = = = = | CP16 | 17000000 | CP43 | 0.0183
0.0524
0.0524
0.0582
0.0659
0.0673
0.0674
0.0667
0.0667 | | a_{∞} | 60.5
179.7
414.4
241.8
526.9
619.9
270.1
550.8
668.3
568.3
319.3 | CP15 | 0.0007
0.0007
0.0073
0.0110
0.0073
0.0073
0.00073
0.00073
0.00073
0.00073
0.00073
0.00073
0.00073 | CP42 | -0.0568
-0.0422
-0.0328
-0.0348
-0.0348
-0.0350
-0.0350
-0.0350
-0.0350 | | <i>∞</i> | 1063.5
916.9
2134.9
826.7
1812.0
2123.0
857.3
1751.0
2122.7
870.5 | CP14 | 0.0588
-0.0362
-0.0362
-0.0273
-0.0208
-0.0179
-0.0179
-0.0109
-0.0109 | CP41 | | | a | 0.5353535355 | CP13 | -0.0852
-0.0852
-0.0489
-0.0374
-0.0240
-0.0323
-0.0212
-0.0215
-0.0028 | CP40 | 0.0244
0.0508
0.0642
0.0642
0.0668
0.0642
0.0681
0.0661
0.0661 | | 9 ~ 10-6 | | CP19 | 0.1024
-0.1024
-0.0527
-0.0527
-0.0488
-0.0531
-0.0459
-0.0459
-0.0450
-0.0432
-0.0332 | CP39 | -0.0244
-0.0034
0.0090
-0.0055
0.0003
-0.0093
-0.0034
-0.0034
-0.0036
-0.0036
-0.0036 | | | 0.29
0.60
0.59
0.85
0.85
0.85
0.90
0.90 | 1100 | CP11
-0.1234
-0.0878
-0.0685
-0.0655
-0.0657
-0.0751
-0.0607
-0.0607
-0.0473
-0.0302 | CD38 | -0.0680
-0.0497
-0.0416
-0.0426
-0.0451
-0.0451
-0.0437
-0.0440
-0.0401
-0.0382 | | ſ | Kun
88.
87.
33.
35.
35.
35.
132.
232.
285.
134. | f | Run
88
87
33
132. 132.
134.
234.
232.
234.
235.
134. | Ċ | 88.
87.
33.
33.
135.
186.
186.
187. | Table VII. Continued | 5 | 0.1480
0.1215
0.0834
0.0822
0.0822 | 0.0617
0.0616
0.0634
0.0360
0.0497
0.0241 | CP164 | 0.1922
0.2284
0.2441 | 0.2655
0.2651
0.2651
0.2701 | 0.2656
0.2672
0.2524
0.2623 | | CP180
0.3621
0.3842
0.3842
0.3821
0.3829
0.3709
0.3702
0.3668
0.3615
0.3337
0.3429 | |---------|--|---|---------|---|--|---|-------|--| | CD130 | | | CP163_0 | | | | | 0.2748 0.
0.3142 0.
0.3142 0.
0.3387 0.
0.3383 0.
0.3283 0.
0.3283 0.
0.3284 0.
0.3284 0.
0.2980 0. | | CP138 | 111117 | | CP162 | | | 0.2080
0.2099
0.1835
0.1954
0.1589 | | | | CP137 | | | CP161 | 0.1662
0.1936
0.2151
0.1737 | $\begin{array}{c} 0.1853\\ 0.1838\\ 0.1574 \end{array}$ | $\begin{array}{c} 0.1655 \\ 0.1713 \\ 0.1311 \\ 0.1471 \\ 0.1082 \end{array}$ | CP177 | | | CP136 | 111177 | | CP159 | $\begin{array}{c} 0.0835 \\ 0.0674 \\ 0.0765 \\ 0.0289 \end{array}$ | $\begin{array}{c} 0.0319 \\ 0.0332 \\ 0.0150 \\ \end{array}$ | 0.0170
0.0180
-0.0005
0.0142 | CP176 | | | 4 CP135 | | | CP158 | | -0.1151
-0.1226
-0.1140 | -0.1092
-0.1047
-0.0947
-0.0985
-0.0865 | CP175 | | | 3 CP134 | | -0.1264
-0.1213
-0.1013
-0.1116
-0.0867 | CP157 | -0.2420
-0.1882
-0.1783
-0.1528 | -0.1458
-0.1460
-0.1367 | -0.1320
-0.1300
-0.1144
-0.1093
-0.0938 | CP174 | 0.1656
0.1696
0.1789
0.1561
0.1510
0.1545
0.1377
0.1354
0.1120
0.1120 | | 2 CP133 | | -0.1280
-0.1245
-0.1090
-0.1091
-0.0918 | CP154 | $\begin{array}{c} 0.1353 \\ 0.1308 \\ 0.1468 \\ 0.1024 \end{array}$ | $0.1018 \\ 0.0993 \\ 0.0857 \\ 0.0850$ | | CP173 | 0.4170
0.4535
0.4761
0.4781
0.4839
0.4817
0.4790
0.4795
0.4795
0.4703
0.4703 | | l CP132 | | -0.1187
-0.1175
-0.0951
-0.1000
-0.0796 | CP153 | 0.0739
0.0651
0.0793
0.0248 | 0.0353
0.0314
0.0129 | 0.0253
0.0253
0.0029
0.0146
-0.0045 | CP172 | 0.4921
0.4806
0.5296
0.4300
0.4517
0.4620
0.3981
0.4151
0.4275
0.3421
0.3730 | |) CP131 | | -0.1219
-0.1202
-0.1046
-0.1011
-0.0874 | CP152 | 0.0006
-0.0161
-0.0068
-0.0291 | -0.030 5
-0.031 6
-0.0343
-0.0334 | -0.0342
-0.0408
-0.0313
-0.0416 | CP171 | 0.5526
0.5655
0.5655
0.5616
0.5613
0.5643
0.5411
0.5411
0.5411
0.5411 | | CP130 | -0.12273
-0.1767
-0.1592
-0.1290
-0.1303
-0.1324
-0.1140 | | CP151 | -0.1078
-0.0956
-0.0798
-0.0915 | | | CP170 | 0.5326
0.5483
0.5730
0.5515
0.5515
0.5545
0.5330
0.5361
0.5362
0.4884
0.4328 | | l CP129 | -0.2216
-0.1733
-0.1683
-0.1434
-0.1365
-0.1378 | | CP150 | -0.1781
-0.1468
-0.1356
-0.1218
-0.1299 | -0.1228
-0.1135
-0.1141 | $\begin{array}{c} -0.1141 \\ -0.1017 \\ -0.0979 \\ -0.0897 \end{array}$ | CP169 | 0.4715
0.4987
0.5126
0.5041
0.5094
0.5094
0.4908
0.4940
0.4880
0.4880
0.4409
0.4409 | | CP124 | 0.0818
0.0818
0.1014
0.0501
0.0562
0.0374 | | CP149 | -0.2218
-0.1782
-0.1731
-0.1487
-0.1461 | | -0.1352
-0.1243
-0.1134
-0.1070 | CP168 | 0.4298
0.4502
0.4502
0.4597
0.4586
0.4558
0.4477
0.4425
0.4051
0.4250 | | CP123 | 0.0226
0.0348
0.0348
0.0228
0.0281
0.0261
0.0142 | | CP148 | -0.2214
-0.1847
-0.1740
-0.1454
-0.1455 | -0.1474
-0.1339
-0.1364 | -0.1359 -0.1169 -0.1149 -0.0998 | CP167 | 0.3203
0.3573
0.3748
0.3748
0.3760
0.3681
0.3691
0.3660
0.3404
0.3524 | | CP115 | 0.0670
0.1091
0.1250
0.1467
0.1514
0.1500
0.1585 | | CP147 | -0.2425
-0.1884
-0.1748
-0.1530
-0.1423 | -0.1448
-0.1359
-0.1289 | -0.1261
-0.1111
-0.1072
-0.0925 | CP166 | 0.2672
0.2954
0.3072
0.3268
0.3251
0.3253
0.3253
0.3210
0.3210 | | n CP114 | | $\begin{array}{c} 0.1376 \\ 0.1395 \\ 0.1421 \\ 0.1329 \end{array}$ | | 0.1640
0.1694
0.1864
0.1320
0.1393 | 0.1383 0.1110 0.1187 | 0.1184 0.0833 0.1004
0.0649 | CP165 | 0.2040
0.2493
0.2693
0.2840
0.2884
0.2885
0.2910
0.2931
0.2742
0.2856 | | Run | 88.
87.
33.
35.
132.
132.
234. | 232.
285.
134.
185. | Run | 88.
33.
35. | 132.
186.
234. | 285.
134.
185. | Run | 88.
33.
33.
35.
132.
132.
134.
234.
232.
285.
134. | Table VII. Continued | CP198 | 0.2791 | 0.3096
0.3248
0.3283 | 0.3290 | 0.3189 | 0.3142 0.2880 | 0.2706 | CP227 | 0.6566 | $0.6921 \\ 0.7075$ | 0.7142 | 0.7181 | 0.7246 | $0.7127 \\ 0.7104$ | 0.6883 | 0.6461 | CP263 | | 0.0808 | | | | $\begin{array}{ccc} 3 & 0.1294 \\ 0 & 0.1331 \end{array}$ | | | | |---------|----------|--|-------------|-------------|--------------------|---|---------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---|-------|---------|-----------------|----------------------|--------------------|--------------------|---|-------------------------------|-----------------------|----------| | CP197 (| 0.9955 (| | | | | 0.2821 0.2591 | CP226 | 0.5711 | $0.6065 \\ 0.6250$ | 0.6414 | 0.6330 | 0.6393 | $0.6212 \\ 0.6160$ | 0.5994 | 0.5625 | CP262 | -0.1236 | -0.0938 | | -0.0989 | | -0.0943 | | | | | CP196 (| | 0.2412 (0.2412 (0.2559 (0.2758) | | | $0.2722 \\ 0.2648$ | $0.2714 \\ 0.2565$ | CP225 | 0.5712 | $0.6119 \\ 0.6189$ | 0.6350 | 0.6335 0.6419 | 0.6384 | $0.6273 \\ 0.6275$ | 0.6120 | 0.6264 0.5858 | CP261 | -0.1527 | -0.1275 | | | | -0.1443 | | | | | CP195 C | | 0.1658 0
0.2074 (
0.2312 (
0.2359 (| | | | 0.2477 0.2354 | CP221 | 0.5096 | 0.5361 | 0.5451 | 0.5481 0.5487 | 0.5379 | 0.5359 | 0.3441 0.4976 | $0.5161 \\ 0.4510$ | CP260 | -0.1928 | -0.1846 | -0.1731 | -0.2128 | -0.2129 | -0.2176 | | -0.1940 | | | CP194 C | | | | | | 0.2365 (
0.2305 (| CP220 | 0.4753 | 0.4855 | 0.4828 | 0.4854 | 0.4617 | 0.4600 | 0.4055 0.4068 | $0.4375 \\ 0.3544$ | CP259 | 0.3073 | -0.3078 | -0.2934 -0.3478 | -0.3477 | -0.3302 | -0.3466 | -0.3322
-0.2874
-0.2874 | -0.3184 -0.2484 | | | CP193 C | | $egin{array}{c} 0.0952 & 0 \ 0.1391 & 0 \ 0.1554 & 0 \ 0.1724 & 0 \end{array}$ | | | | | CP217 | 0.4320 | 0.4500 | 0.4020 0.4140 | 0.4193 | $0.4215 \\ 0.3994$ | 0.4056 | $0.4014 \\ 0.3699$ | 0.3852 0.3453 | CP258 | 20120 | -0.5450 | -0.5096 | -0.5393 | -0.5458
-0.5080 | -0.5220 | -0.5045 -0.4282 | -0.4745 -0.3800 | | | CP191 | | $egin{array}{c} 0.4596 & 0 \ 0.4700 & 0 \ 0.5139 & 0 \ 0.4252 & 0 \end{array}$ | | | | | CP216 (| 0.4404 | | $0.4673 \\ 0.4190$ | | 0.4277
0.4005 | 0.4030 | 0.3992 0.3700 | 0.3813 0.3446 | CP257 | 1 | -0.7912 | -0.6980 | -0.6802 | -0.6812 | -0.6617 | -0.6462 -0.5943 | -0.6242 -0.5794 | | | į | | 0.4972 0.
0.5092 0.
0.5408 0 | | | | | CP213 (| | | | | 0.3014 | | 0.2936 | 0.2866
0.2483 | CP248 | 0 | 0.3234 0.3708 | 0.3905 | 0.4046 | 0.4013 | 0.3906 | | | | | > | CF189 C | 0.4195 0.44471 0.4624 0.4620 0.4300 0.4 | | | | | CP212 (| 0170 | | 0.2796 | | 0.2852 | | 0.2844 | 0.2719 0.2454 | CP247 | | 0.3464 0.3553 | 0.3621 | 0.3255 | 0.3222 | $0.3162 \\ 0.3152$ | | 0 | | | | CP188 C | 0.2238 0
0.2548 0
0.2717 0 | | | | 0.2787 (0.2504 (| CP205 (| | | 0.3868 | 0.3832 0.3929 | 0.4003 | 0.3729 0.3730 | 0.3769 | 0.3631 0.3183 | CP246 | 3 | 0.1609 | | $0.2295 \\ 0.2291$ | | 0.2366 0.2353 | | 0 | 5 | | | CP186 C | | | | | 0.3938 0
0.4073 0
0.3650 0 | CP204 (| | $0.3228 \\ 0.3538$ | 0.3800 | 0.3441 0.3653 | 0.3601 | 0.3213 | 0.3426 | 0.2021 0.2815 0.2086 | CP945 | | 0.0432 | | 0.1200 | | 0.1294 | 0.1 | | | | | 7P185 C | | | | | 0.3344
0.3688
0.2819 | CP203 | | $0.3206 \\ 0.3739$ | 0.3980 | $0.3925 \\ 0.4122$ | 0.4078 | 0.3854 | 0.4007 | $0.3380 \\ 0.3609 \\ 0.2821$ | CD933 | CF 7.99 | 0.5618 | | 0.6368 | | 0.6354 | | | 0.5864 | | | CP184 (| | | | | 0.4483 0.4729 0.3953 | CDSOL | CI 202 | 0.3662 | 0.3771 | 0.3994 | 0.3885 | 0.3997 | | 0.3630
0.3865
0.3259 | | CF232 | | | 0.6403 | | | | | 0.05625 | | | CP183 (| | | | | $0.4409 \\ 0.4612 \\ 0.3955$ | CD901 | CF201 | 0.3585 | 0.3964 | 0.3427 | | 0.3473 | | $0.3268 \\ 0.3446 \\ 0.3058$ | | CP231 | | 0.7091 | | | | | | 5 0.6440 | | | CP182 (| 0.4334
0.4460
0.4593 | | 0.4563 | 0.4538 0.4489 | $0.4161 \\ 0.4299 \\ 0.3748$ | 00000 | CF200 | 0.3497 | 0.3785 | 0.3491 | | | | $\begin{array}{c} 0.3035 \\ 0.3149 \\ 0.2861 \end{array}$ | | CP230 | | 3 0.7576
3 0.7764 | | 3 0.7896 | | | _ | 0 | | | CP181 (| 0.4001
0.4142
0.4322 | | | 0.4077 | $\begin{array}{c} 0.3764 \\ 0.3880 \\ 0.3416 \end{array}$ | 90 | CP199 | 0.2974 | 0.3367 | 0.3441 | 0.3407 | 0.3166 | $0.3246 \\ 0.3163$ | 0.2826
0.3036
0.2660 | 1 | 1 CP228 | | 0.7418 | | $0.7710 \ 0.7773$ | | | . 0.7595
L. 0.7656 | | | | Run | 88.
87. | 286.
35. | 132.
186 | 234.
232. | 285.
134.
185. | (| Run | ∞
∞
000 | 3 ∞ | 286. | | 186. | 234.
232. | 285.
134. | 0 | Run | 88 | 87. | 286 | | 132. | 234.
232. | 285.
134 | 185 | Table VII. Concluded | | 0.8234
0.8533
0.8471
0.8883
0.8765
0.8909
0.8837
0.8749
0.8749
0.8749 | 101.0 | | |--------|--|-------------|--| | CD978 | | †
}
} | | | CP977 | | | | | CP276 | | | | | CP275 | 0.4490
0.4962
0.5175
0.5197
0.5308
0.5328
0.5122
0.5142
0.5132
0.4731
0.4989 | | | | CP27.4 | -0.1911
-0.1974
-0.1806
-0.2199
-0.2271
-0.2271
-0.2317
-0.2317
-0.2311
-0.2117 | | | | CP273 | 0.0361
0.0851
0.0660
0.1347
0.1229
0.1283
0.1283
0.1286
0.1288 | | | | CP272 | -0.1870
-0.1645
-0.1645
-0.2220
-0.2218
-0.2218
-0.2213
-0.2057
-0.2038
-0.1812
-0.2038 | | | | CP271 | -0.2072
-0.2100
-0.1991
-0.2407
-0.2411
-0.2397
-0.2425
-0.2462
-0.2462
-0.2462
-0.2360
-0.2360 | | | | CP270 | -0.1474
-0.1378
-0.1379
-0.1426
-0.1427
-0.1362
-0.1427
-0.1362
-0.1162
-0.1162 | | | | CP269 | -0.0690
-0.0328
-0.0198
-0.0172
-0.0165
-0.0164
-0.0068
-0.0068
-0.0038
-0.0038 | | | | CP268 | 0.0006
0.0394
0.0481
0.0681
0.0699
0.0740
0.0734
0.0841
0.0909 | CP284 | 0.6090
0.6169
0.6138
0.6280
0.6174
0.6208
0.6246
0.6058
0.6072
0.5886
0.6051 | | CP267 | 0.0241
0.0746
0.0892
0.1116
0.1170
0.1215
0.1259
0.1259
0.1284
0.1310
0.1401 | CP283 | 0.4836
0.5167
0.5468
0.5268
0.5324
0.5149
0.5170
0.5118
0.4986 | | CP266 | 0.0453
0.0912
0.1132
0.1399
0.1415
0.1405
0.1535
0.1535
0.1575
0.1636
0.1654 | CP282 | 0.6454
0.6548
0.6548
0.6618
0.6619
0.6513
0.6336
0.6203
0.5692
0.5692 | | _ | 0.0370
0.0895
0.1056
0.1299
0.1384
0.1386
0.1455
0.1509
0.1536
0.1642
0.1638 | CP281 | 0.7629
0.7922
0.7921
0.7940
0.7940
0.7994
0.7779
0.7779
0.7779
0.7779
0.7779
0.7779
0.7779
0.7779 | | | 0.0449
0.0884
0.1078
0.1333
0.1343
0.1456
0.1454
0.1454
0.1454 | CP280 | 0.8178
0.8541
0.8624
0.8786
0.8739
0.8743
0.8588
0.8588
0.8588
0.8588
0.8588 | | Run | 88.
33.
286.
35.
132.
134.
232.
232.
232.
285.
134. | Run | 88.
87.
33.
286.
35.
132.
186.
234.
232.
285.
184.
(184. | | | | | | Table VIII. Pressure Coefficients for l/h=11.7 Cavity With Rear Block | CP10 | -0.0637
-0.0575
-0.0357
-0.0649 | CP37 | -0.0688
-0.0646
-0.0509
-0.0555 | CP67 | $\begin{array}{c} -0.1178 \\ -0.1097 \\ -0.0906 \\ -0.0826 \end{array}$ | CP108 | -0.1089
-0.1014
-0.0797
-0.0738 | CP135
-0.1398
-0.1291
-0.1061
-0.0959 | |---------------|--|------|--|------|---|-------|--|---| | CP9 | -0.0864 -(| | -0.0433 -
-0.0397 -
-0.0320 -
-0.0308 - | CP66 | -0.1183
-0.1086
-0.0846
-0.0781 | CP107 | -0.1274
-0.1182
-0.0957
-0.0866 | CP134
-0.1235
-0.1150
-0.0877 | | CP8 | -0.0942 -(
-0.0941 -(
-0.0829 -(
-0.2906 -(| | -0.0626 -
-0.0560 -
-0.0422 - | CP65 | -0.1333
-0.1250
-0.1028
-0.0941 | CP106 | -0.1203
-0.1116
-0.0866
-0.0799 | CP133
-0.1349
-0.1263
-0.1032 | | CP7 | -0.1582 -
-0.1655 -
-0.1614 -
-0.3736 - | | -0.0406
-0.0348
-0.0240
-0.0187 | CP50 | -0.1056
-0.0982
-0.0792
-0.0705 | CP105 | -0.1324
-0.1228
-0.1005
-0.0909 | CP132
-0.1231
-0.1160
-0.0948
-0.0875 | | CP6 | -0.2067 -
-0.2173 -
-0.2926 -
-0.3645 - | CP33 | -0.0443
-0.0374
-0.0250
-0.0173 | CP49 | -0.1281
-0.1184
-0.0926
-0.0848 | CP104 | -0.1204
-0.1129
-0.0942
-0.0847 | CP131
-0.1339
-0.1052
-0.1052 | | CP5 | -0.2613 -
-0.2815 -
-0.4103 -
-0.3606 - | CP21 | -0.0384
-0.0279
-0.0134
-0.0058 | CP48 | -0.1103
-0.1036
-0.0854
-0.0746 | CP103 | -0.1254
-0.1177
-0.0933
-0.0859 | CP130
-0.1173
-0.1097
3 -0.0905
2 -0.0815 | | CP4 | -0.2819 -
-0.3073 -
-0.4134 -
-0.3193 - | CP20 |
-0.0242
-0.0214
-0.0147
-0.0039 | CP47 | -0.1120
-0.1007
-0.0749
-0.0672 | CP102 | -0.1175
-0.1102
-0.0901
-0.0819 | CP129
-0.1341
-0.1252
-0.1058 | | CP3 | -0.3671 -
-0.4208 -
-0.3852 -
-0.2889 - | CP19 | -0.0419
-0.0366
-0.0269
-0.0176 | CP46 | -0.1080
-0.0986
-0.0729
-0.0676 | CP101 | -0.1283
-0.1204
-0.1004
-0.0913 | CP124
0.0959
0.0780
0.0614 | | CP2 | -0.3189 -
-0.2944 -
-0.2153 -
-0.0968 - | CP18 | -0.0314
-0.0274
-0.0203
-0.0089 | CP45 | -0.1223
-0.1144
-0.0933
-0.0847 | CP100 | -0.1152
-0.1080
-0.0820
-0.0791 | CP123
0.00568
0.00465
0.0331
0.0204 | | CP1 | 1.1170 -
1.1551 -
1.2004 -
1.2394 - | CP17 | -0.0554
-0.0484
-0.0374
-0.0192 | CP44 | -0.1088
-0.1010
-0.0806
-0.0722 | CP99 | 9999 | CP115
0.1535
0.1607
0.1700
0.1700 | | $T_{t\infty}$ | 109.7
116.4
113.5
114.5 | CP16 | -0.0547
-0.0483
-0.0375
-0.0143 | CP43 | 0.0617
0.0648
0.0690
0.0662 | CP98 | 9977 | CP114
0.1361
0.1418
0.1489
0.1489 | | ďx | 243.2
271.1
291.1
316.3 | CP15 | -0.0260
-0.0177
-0.0030
0.0276 | CP42 | -0.0386
-0.0387
-0.0336
-0.0370 | CP97 | 7777 | CP113
0.0936
0.0983
0.1052
0.0971 | | o to | 831.5
862.1
871.6
894.4 | CP14 | -0.0263
-0.0203
-0.0060
0.0337 | CPA1 | -0.0432
-0.0383
-0.0232
-0.0238 | CDRF | 7777 | CP112
0.0757
0.0741
0.0746
0.0655 | | É | 547.2 538.7 517.2 500.1 | CP13 | -0.0433
-0.0361
-0.0189
0.0240 | CDAO | | CD84 | -0.1187
-0.1101
-0.0879
-0.0809 | CP1111
0.0294
0.0259
0.0264
0.0186 | | 9-110-6 | 8 × 10
1.5
1.6
1.7 | CP12 | -# O) (O -# | Ç | -0.0041
-0.0058
-0.0040
-0.0116 | 0000 | -0.1181
-0.1114
-0.0920
-0.0842 | CP110
-0.0168
-0.0202
-0.0236
-0.0235 | | o Je | M_{∞} R 0.80 0.85 0.90 0.95 | CP11 | -0.0868
-0.0778
-0.0551
-0.0265 | Ç | CP38
-0.0479
-0.0478
-0.0414 | 6 | CP68
0.0365
0.0323
0.0280
0.0207 | CP109
-0.0773
-0.0603
-0.0587 | | í | Kun
281.
181.
280.
180. | Bun | | , | Run
281.
181.
280.
180. | ı | Run
281.
181.
280.
180. | Run
281.
181.
280.
180. | ## Table VIII. Continued | | -0.0815
-0.0803
-0.0738
-0.0713 | | CP168 | $\begin{array}{c} 0.4331 \\ 0.4312 \\ 0.4099 \\ 0.3803 \end{array}$ | | CP193 | 0.1857
0.1940
0.2027
0.1986 | , | $\begin{array}{c} \text{CP245} \\ 0.1235 \\ 0.1310 \\ 0.1424 \\ 0.1371 \end{array}$ | 1101:0 | CP269 | -0.0028
0.0137
0.0424
0.0647 | |--------|---|-------|---------|---|--------|--------|---|--------|---|--------|--------|--| | | -0.1201
-0.1124
-0.0974
-0.0886 | | CP167 | $\begin{array}{c} 0.3680 \\ 0.3727 \\ 0.3664 \\ 0.3420 \end{array}$ | ;
; | CP190 | $\begin{array}{c} 0.5043 \\ 0.5034 \\ 0.4839 \\ 0.4422 \end{array}$ | | CF217
0.4444
0.4246
0.3965 | | CP268 | 0.0769 -
0.0923
0.1154
0.1350 | | CD140 | ' ' ' ' | ć | CP166 | 0.3226
0.3305
0.3285
0.3107 | 90 | CP189 | $\begin{array}{c} 0.4325 \\ 0.4343 \\ 0.4165 \\ 0.3869 \end{array}$ | 9,000 | C.F.21b
0.4446
0.4282
0.4282
0.4000 | | CP267 | 0.1052
0.1217
0.1459
0.1625 | | CP1.48 | 1 () 1 | 2 | CP165 | $\begin{array}{c} 0.2723 \\ 0.2840 \\ 0.2891 \\ 0.2725 \end{array}$ | CD100 | CF188 | $\begin{array}{c} 0.2848 \\ 0.2962 \\ 0.3042 \\ 0.2886 \end{array}$ | CD01.9 | 0.2921
0.3015
0.3057
0.2902 | | CP266 | 0.1266
0.1424
0.1669
0.1798 | | CP147 | + + 1 1 1 | CD164 | CF 104 | 0.2562
0.2646
0.2644
0.2451 | CD189 | C1 100 | $\begin{array}{c} 0.4871 \\ 0.4879 \\ 0.4665 \\ 0.4289 \end{array}$ | CD919 | | | CP265 | 0.1142
0.1308
0.1550
0.1665 | | CP146 | -0.1204
-0.1127
-0.0941
-0.0850 | CP163 | 001 100 | 0.2249 0.2316 0.2278 0.2043 | CP189 | 701 10 | $\begin{array}{c} 0.4660 \\ 0.4666 \\ 0.4468 \\ 0.4131 \end{array}$ | CP204 | 0.3976
0.4173
0.4345
0.4354 | | CF264 | 0.1179
0.1311
0.1518
0.1602 | | CP145 | -0.1420
-0.1341
-0.1170
-0.1043 | CP169 | 201.10 | 0.2148 0.2115 0.1934 0.1653 | CP181 | | $\begin{array}{c} 0.4277 \\ 0.4310 \\ 0.4182 \\ 0.3872 \end{array}$ | CP203 | 0.3883
0.4027
0.4048
0.3937 | | CF 203 | 0.1027
0.1148
0.1329
0.1387 | | CP144 | -0.1272
-0.1212
-0.1010
-0.0921 | CP161 | 0 1670 | 0.1078 0.1592 0.1392 0.1089 | CP180 | l
i | $\begin{array}{c} 0.3779 \\ 0.3854 \\ 0.3814 \\ 0.3562 \end{array}$ | CP202 | 0.4089
0.4143
0.4046
0.3879 | CD969 | 202 10 | -0.0823
-0.0728
-0.0378
-0.0345 | | CP143 | -0.1326
-0.1256
-0.1085
-0.0966 | CP159 | 0.0889 | | CP179 | | $\begin{array}{c} 0.3177 \\ 0.3290 \\ 0.3312 \\ 0.3142 \end{array}$ | CP201 | $\begin{array}{c} 0.3914 \\ 0.3983 \\ 0.3924 \\ 0.3691 \end{array}$ | CP961 | | -0.1231 -
-0.1181 -
-0.0839 -
-0.0743 - | | CP142 | -0.1214
-0.1148
-0.0997
-0.0886 | CP158 | -0.1189 | | CP178 | | 0.2872
0.2980
0.3004
0.2872 | CP200 | $\begin{array}{c} 0.3879 \\ 0.3918 \\ 0.3825 \\ 0.3602 \end{array}$ | CP260 | | -0.1675 -
-0.1686 -
-0.1329 -
-0.1154 - | | CP141 | $\begin{array}{c} 0.1241 \\ 0.1093 \\ 0.0857 \\ 0.0598 \end{array}$ | CP157 | -0.1352 | -0.1256
-0.1056
-0.0948 | CP177 | | 0.2466
0.2587
0.2670
0.2492 | CP199 | 0.3597
0.3640
0.3578
0.3375 | CP259 | | -0.3000 -
-0.3002 -
-0.2411 - | | CP140 | 0.0653
0.0491
0.0270
0.0116 | CP156 | -0.1228 | | CP176 | 6 | $\begin{array}{c} 0.2365 \\ 0.2431 \\ 0.2400 \\ 0.2181 \end{array}$ | CP198 | $\begin{array}{c} 0.3433 \\ 0.3508 \\ 0.3491 \\ 0.3290 \end{array}$ | CP258 | | -0.4808 -
-0.4689 -
-0.3951 -
-0.3452 - | | CP139 | -0.0186
-0.0296
-0.0376
-0.0420 | CP155 | -0.1318 | -0.1241
-0.1023
-0.0941 | CP175 | 0 | 0.2138 0.2133 0.1996 0.1720 | CP197 | $\begin{array}{c} 0.3044 \\ 0.3152 \\ 0.3192 \\ 0.3015 \end{array}$ | CP257 | | -0.0320 -
-0.6758 -
-0.6226 -
-0.6010 - | | CP138 | -0.0749
-0.0771
-0.0740
-0.0698 | CP154 | | 0.1309 0.1062 0.0760 | CP174 | 0.1009 | 0.1925 0.1825 0.1568 0.1263 | CP196 | 0.2906
0.2979
0.2989
0.2861 | CP248 | 0 3803 | • | | CP137 | -0.1321
-0.1236
-0.1047
-0.0962 | CP153 | 0.0639 | 0.0497 0.0302 0.0113 | CP170 | 0.4003 | 0.4803 0.4849 0.4603 0.4222 | CP195 | 0.2535
0.2636
0.2705
0.2598 | CP247 | 90280 | | | CP136 | -0.1372
-0.1268
-0.1073
-0.0959 | CP152 | -0.0071 | -0.0150 -0.0252 -0.0318 | CP169 | 0.4545 | 0.4503
0.4249
0.3930 | CP194 | $\begin{array}{c} 0.2453 \\ 0.2534 \\ 0.2575 \\ 0.2492 \end{array}$ | CP246 | 0.2411 | | | Run | 281.
181.
280.
180. | Run | 281. | 280.
180. | Run | 281 | 181.
280.
180. | m Run | 281.
181.
280.
180. | Run | 281. | | | | | | | | | | | | | | | | | CP274 | -0.1869
-0.1995
-0.1761
-0.1966 | |-------|---| | CP273 | $\begin{array}{c} 0.0945 \\ 0.1066 \\ 0.1184 \\ 0.1452 \end{array}$ | | CP272 | $\begin{array}{c} -0.1915 \\ -0.2008 \\ -0.1726 \\ -0.1965 \end{array}$ | | CP271 | -0.2149
-0.2239
-0.2050
-0.2094 | | CP270 | $\begin{array}{c} -0.1127 \\ -0.1053 \\ -0.0791 \\ -0.0578 \end{array}$ | | Run | 281.
181.
280.
180. | Table IX. Pressure Coefficients for l/h=11.7 Cavity With Fence | CP10 | -0.0642
-0.0535
-0.0550
-0.0497
-0.0455
-0.0455
-0.0435
-0.0435
-0.0388
-0.0388
-0.0386
-0.0262 | CD37 | -0.1775
-0.0983
-0.0953
-0.0770
-0.0559
-0.0578
-0.0579
-0.0579
-0.0570
-0.0547 | |--------------|--|------|---| | CP9 | -0.1207
-0.0787
-0.0748
-0.0626
-0.0526
-0.0597
-0.0597
-0.0582
-0.0582
-0.0582
-0.0545
-0.0516
-0.0516 | CP36 | | | CP8 | -0.0381
-0.0660
-0.0712
-0.0732
-0.0738
-0.0785
-0.0791
-0.0802
-0.0802
-0.0625 | CP35 | | | CP7 | -0.1844
-0.1453
-0.1590
-0.1495
-0.1336
-0.1289
-0.1540
-0.1540
-0.1341
-0.1331
-0.1377
-0.1377 | CP34 | | | CP6 | -0.1542
-0.1616
-0.1623
-0.1621
-0.1842
-0.1878
-0.2020
-0.1984
-0.1989
-0.2020
-0.2387
-0.2120
-0.2387
-0.2120 | CP33 | -0.0010
0.0569
0.0588
0.0745
0.0864
0.1004
0.1015
0.1018
0.1129
0.1150
0.1123 | | CP5 | -0.2075 -0.2026 -0.2021 -0.1946 -0.2469 -0.2315 -0.2306 -0.2648 -0.2500 -0.2500 -0.2577 -0.3627 | CP21 | -0.1121
0.0041
0.0141
0.0396
0.0660
0.0703
0.0605
0.0715
0.0840
0.0676
0.0676 | | CP4 | -0.2704
-0.2330
-0.2237
-0.2129
-0.2745
-0.2528
-0.2938
-0.2938
-0.2938
-0.4046
-0.4119
-0.4119 | CP20 | 0.0657
0.0332
0.0248
0.0181
0.0394
0.0396
0.0396
0.0396
0.0396
0.0565 | | CP3 | -0.2821
-0.2857
-0.2924
-0.3024
-0.3624
-0.3831
-0.4323
-0.4369
-0.3801
-0.4569
-0.4916
-0.3026 | CP19 | -0.0623
-0.0138
-0.0106
0.0010
0.0134
0.0116
0.0170
0.0173
0.0173
0.0173
0.0173
0.0173
0.0173 | | CP2 |
-0.2880
-0.1769
-0.2176
-0.2925
-0.3176
-0.3176
-0.2732
-0.2916
-0.3235
-0.1862
-0.1862
-0.1864
-0.1864 | CP18 | -0.0235
-0.0072
-0.0071
-0.0034
0.0065
0.0102
0.0123
0.0113
0.0138 | | CP1 | 0.7876
0.9535
0.9399
0.9769
1.1146
1.1197
1.1224
1.1537
1.1612
1.1630
1.1693
1.1803
1.1946 | CP17 | -0.1023
-0.0433
-0.0371
-0.0194
-0.0298
-0.0066
-0.0184
-0.0058
-0.0001
-0.0003
-0.0005
-0.0007
-0.0005 | | | 88.6
98.8
93.1
93.1
108.4
110.5
115.3
116.9
111.5
116.4
116.4
117.2 | CP16 | -0.0789
-0.0438
-0.0420
-0.0322
-0.0337
-0.0201
-0.0161
-0.0181
-0.0181 | | | 67.6
197.3
202.0
410.1
244.2
537.2
611.1
270.7
555.5
655.7
655.7
299.3
332.1
573.8 | CP15 | -0.0991
-0.0294
-0.0199
-0.0199
-0.0075
0.0075
0.0110
0.0169
0.0170
0.0309 | | | 1182.6
1013.0
1006.2
2084.7
839.1
1835.2
2082.7
863.8
1764.2
2093.6
885.3
985.3
990.0 | CP14 | -0.0276
-0.0168
-0.0168
-0.0104
-0.0105
-0.006
-0.0061
-0.0061
-0.007
0.0059
0.0018 | | | 797.7
785.0
1636.6
554.0
1207.1
1367.8
541.2
1101.3
1312.4
519.2
585.1
1016.1 | CP13 | -0.0546
-0.0335
-0.0343
-0.0262
-0.0172
-0.0173
-0.0119
-0.0119
-0.0019
0.0019 | | R_{∞} | 1.6
1.6
1.5
1.5
1.5
1.3
1.3
1.3
1.3
1.3 | CP12 | -0.0955
-0.0636
-0.0610
-0.0510
-0.0420
-0.0446
-0.0377
-0.0320
-0.0326
-0.0326
-0.0326 | | | 0.29
0.61
0.60
0.60
0.80
0.85
0.85
0.85
0.91
0.90
0.90 | CP11 | -0.1394
-0.0856
-0.0813
-0.0669
-0.0765
-0.0583
-0.0583
-0.0483
-0.0488
-0.0488
-0.0493
-0.0399 | | Run | 242.
242.
145.
247.
44.
243.
46.
143.
176. | Run | 278.
178.
242.
145.
243.
46.
276.
142.
176. | | | | | | Table IX. Continued | CP67 | -0.2746
-0.2043
-0.2002
-0.1891
-0.1590
-0.1468
-0.1458
-0.1360
-0.1399
-0.1328
-0.1295
-0.1287
-0.1282 | CP108 -0.2674 -0.1965 -0.1958 -0.1418 -0.1418 -0.1275 -0.1248 -0.1255 -0.1218 -0.1218 | |---------|--|---| | CP66 | -0.2642 -0.01756 -0.1756 -0.1570 -0.1369 -0.1369 -0.1187 -0.1142 -0.1198 -0.1198 -0.1108 -0.1120 -0.11 | CP107 -0.2745 -0.1988 -0.1974 -0.1548 -0.1428 -0.1416 -0.1368 -0.1260 -0.1260 -0.1261 | | CP65 | -0.2581
-0.1782
-0.1728
-0.1586
-0.1297
-0.1275
-0.1260
-0.1182
-0.1266
-0.1266
-0.1201 | CP106 -0.2611 -0.1868 -0.18737 -0.1737 -0.1323 -0.1323 -0.1172 -0.1172 -0.1155 -0.1167 | | CP50 | -0.1836
-0.1483
-0.1494
-0.1227
-0.1219
-0.1051
-0.1064
-0.1066 | CP105 -0.2676 -0.1894 -0.1874 -0.1499 -0.1360 -0.1376 -0.1317 -0.1206 -0.1207 | | CP49 | 0.3147
-0.1865
-0.1838
-0.1538
-0.1211
-0.1225
-0.1183
-0.1028
-0.1167
-0.1167
-0.1172 | CP104 -0.2067 -0.1692 -0.1685 -0.1655 -0.1334 -0.1337 -0.1274 -0.1274 -0.1166 -0.1167 | | CP48 | 0.1778
-0.1524
-0.1538
-0.1540
-0.1229
-0.1229
-0.1083
-0.1181
-0.1181
-0.1168
-0.1044 | CP103 -0.2580 -0.1799 -0.1769 -0.1430 -0.1303 -0.1281 -0.1259 -0.1152 -0.1154 | | CP47 | 0.1792
-0.1792
-0.1770
-0.1540
-0.1150
-0.1150
-0.1134
-0.1134
-0.1134
-0.1134
-0.1191
-0.1191 | CP102 -0.1993 -0.1606 -0.1606 -0.1582 -0.1284 -0.1284 -0.1234 -0.1133 -0.1137 -0.1137 | | CP46 | -0.2796
-0.1742
-0.1727
-0.1504
-0.1110
-0.1110
-0.1098
-0.1098
-0.1093
-0.1024
-0.1193
-0.1049 | CP101 -0.2184 -0.1679 -0.1679 -0.1601 -0.1326 -0.1310 -0.1217 -0.1215 -0.1186 | | CP45 | -0.2376
-0.1668
-0.1650
-0.1524
-0.1221
-0.1210
-0.1163
-0.1177
-0.1133 | CP100 -0.2566 -0.1705 -0.1669 -0.1521 -0.1346 -0.1176 -0.118 -0.1118 -0.1109 -0.1109 | | CP44 | -0.2049
-0.1550
-0.1546
-0.1477
-0.1184
-0.1195
-0.1085
-0.1046
-0.1068
-0.1068 | CP99 -0.2046 -0.1632 -0.1629 -0.1578 -0.1380 -0.1316 -0.1213 -0.1228 -0.1175 -0.1175 -0.1166 | | CP43 | 0.0092
-0.0169
-0.0165
-0.0267
-0.0704
-0.0713
-0.0773
-0.0773
-0.0773
-0.0773 | CP98 -0.1836 -0.1519 -0.1531 -0.1531 -0.1272 -0.1251 -0.1251 -0.1106 -0.1106 -0.1106 | | CP42 | -0.1016
-0.0965
-0.0982
-0.0889
-0.0887
-0.0887
-0.0869
-0.0869
-0.0869
-0.0869
-0.0830
-0.0830
-0.0814
-0.0814 | CP97 -0.2473 -0.1712 -0.1672 -0.1534 -0.1268 -0.1244 -0.1230 -0.1234 -0.1144 -0.1184 -0.1184 | | CP41 | - · · · · · · · · · · · · · · · · · · · | CP85 -0.2476 -0.1747 -0.1720 -0.1584 -0.1426 -0.1275 -0.1228 -0.1228 -0.1162 -0.1164 -0.1164 -0.1164 | | CP40 | | CP84 -0.2332 -0.1657 -0.1655 -0.1567 -0.1345 -0.1242 -0.1109 -0.1109 -0.1133 | | CP30 | | CP80 -0.1957 -0.1549 -0.1554 -0.1558 -0.1528 -0.1239 -0.1243 -0.1121 -0.1101 -0.1099 | | CD38 | | CP68 -0.1149 -0.1462 -0.1463 -0.1463 -0.1463 -0.1478 -0.1478 -0.1314 -0.1314 -0.1297 -0.1328 | | <u></u> | 278 178. 242. 145. 277. 44. 245. 177. 243. 46. 276. 142. 143. 176. | Run
278.
178.
242.
145.
277.
44.
245.
177.
243.
46.
276.
142. | Table IX. Continued | 14 | | | | |-------
---|--------|---| | CD19E | 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 | 2162 | 0.2516
-0.2075
-0.2055
-0.2055
-0.1996
-0.1574
-0.1574
-0.1429
-0.1483
-0.1483
-0.1483
-0.1483
-0.1483 | | CP134 | -0.2730
-0.1815
-0.1815
-0.1815
-0.1428
-0.1268
-0.1197
-0.1162
-0.1163
-0.1163
-0.1253
-0.1253
-0.1253 | CD1E0 | | | CP133 | | CP1.40 | | | CP139 | | CP148 | | | CP131 | -0.2287
-0.1736
-0.1741
-0.1648
-0.1421
-0.1326
-0.1282
-0.1282
-0.1289
-0.1189
-0.1189 | CP147 | | | CP130 | -0.1947
-0.1587
-0.1615
-0.1604
-0.1292
-0.1285
-0.1118
-0.1227
-0.1181
-0.1073
-0.1139 | CP146 | -0.2003
-0.1618
-0.1636
-0.1599
-0.1321
-0.1279
-0.1179
-0.1179
-0.1104
-0.1166
-0.1166 | | CP129 | -0.2199
-0.1701
-0.1727
-0.1627
-0.1343
-0.1343
-0.1268
-0.1268
-0.1208
-0.1208
-0.1208 | CP145 | -0.2089
-0.1711
-0.1748
-0.1678
-0.1414
-0.1400
-0.1344
-0.1344
-0.1344
-0.1240
-0.1240 | | CP124 | -0.0975
-0.1402
-0.1336
-0.1453
-0.1418
-0.1373
-0.1373
-0.1231
-0.1250
-0.1250
-0.1254 | CP144 | -0.2122
-0.1644
-0.1655
-0.1590
-0.1338
-0.1286
-0.1158
-0.1174
-0.1174
-0.1178
-0.1118 | | CP123 | -0.1341
-0.1554
-0.1490
-0.1599
-0.1510
-0.1510
-0.1433
-0.1322
-0.1339
-0.1339 | CP143 | -0.1920
-0.1611
-0.1658
-0.1605
-0.1362
-0.1342
-0.1342
-0.1281
-0.1281
-0.1283
-0.1163
-0.1163
-0.1163 | | CP115 | 0.0376
0.0523
0.0531
0.0496
-0.0319
-0.0379
-0.0468
-0.0468
-0.0508
-0.0508
-0.0508 | CP142 | -0.1591
-0.1496
-0.1557
-0.1557
-0.1230
-0.123
-0.1236
-0.1236
-0.1236
-0.1080
-0.1085
-0.1085 | | CP114 | 0.0365
0.0116
0.0133
-0.0010
-0.0630
-0.0726
-0.0707
-0.0802
-0.0797
-0.0758
-0.0758 | CP141 | -0.0386
-0.1090
-0.1001
-0.1147
-0.1147
-0.1425
-0.1328
-0.1328
-0.1328
-0.1328 | | CP113 | -0.0728
-0.0681
-0.0588
-0.0680
-0.1176
-0.1074
-0.1110
-0.1109
-0.1109
-0.1108 | CP140 | -0.0716
-0.1497
-0.1496
-0.1549
-0.1559
-0.1578
-0.1578
-0.1578
-0.1578
-0.1398
-0.1324
-0.1324 | | CP112 | -0.0760
-0.1083
-0.1043
-0.1147
-0.1324
-0.1226
-0.1304
-0.1229
-0.1229
-0.1180 | CP139 | -0.1790
-0.1938
-0.1935
-0.1979
-0.1675
-0.1665
-0.1406
-0.1366
-0.1366 | | CP111 | -0.1784
-0.1639
-0.1565
-0.1565
-0.1572
-0.1485
-0.1397
-0.1373
-0.1373
-0.1373
-0.1373 | CP138 | -0.1814
-0.1881
-0.1938
-0.2002
-0.1544
-0.1611
-0.1353
-0.1496
-0.1281
-0.1352 | | CP110 | -0.1517
-0.1748
-0.1727
-0.1842
-0.1546
-0.1598
-0.1369
-0.1302
-0.1302
-0.1368 | CP137 | -0.2865
-0.2076
-0.2046
-0.1936
-0.1535
-0.1547
-0.1455
-0.1375
-0.1375
-0.1375
-0.1375
-0.1375
-0.1375 | | CP109 | -0.2823
-0.2093
-0.2066
-0.1953
-0.1529
-0.1421
-0.1439
-0.1342
-0.1325 | CP136 | -0.2132
-0.1788
-0.1824
-0.1462
-0.1457
-0.1285
-0.1285
-0.1284
-0.1288
-0.1288 | | Run | 278.
178.
242.
145.
247.
243.
46.
276.
142.
143. | Run | 278.
178.
242.
145.
277.
245.
177.
243.
46.
276.
142.
143. | | | | | | Table IX. Continued | CP168 | 0.3266
0.2858
0.2807
0.2721
0.1664
0.1664
0.1531
0.1387
0.1207
0.1207
0.0919 | CP184 | 0.3644
0.3363
0.3351
0.3322
0.1988
0.1987
0.1834
0.1759
0.1751
0.1751
0.1514 | |---------|--|----------|---| | _ | 0.2293 0.2405 0.2405 0.2390 0.2406 0.1461 0.1372 0.1189 0.1127 0.1126 0.0874 0.0874 0.0877 | CP183 | 0.3202
0.3093
0.3071
0.3081
0.1982
0.1928
0.1690
0.1690
0.1425
0.1425 | | CP166 (| 0.2490 (0.2292 (0.2255 (0.2255 (0.2170 (0.1197 (0.0989 (0.0961 (0.0584 (0.0584 (0.0584 (0.0543 (0.0544 | CP182 | 0.3342
0.2975
0.2933
0.2862
0.1949
0.1836
0.1633
0.1605
0.1395
0.1391
0.1354 | | CP165 C | 0.1635 (0.1842 (0.1842 (0.1842 (0.1839 (0.1869 (0.0648 (0.06648 (0.0606 (0.0606 (0.0383 (0.0111 (0.0111 (0.0102 (0.0102 (0.0103 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0103 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0103 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0102 (0.0103 (0.0102
(0.0102 (0.010 | CP181 | 0.2595
0.2639
0.2628
0.2666
0.1742
0.1711
0.1528
0.1512
0.1511
0.1210
0.1218 | | CP164 (| 0.2022
0.1664
0.1602
0.1503
0.0301
0.0167
0.0139
0.0043
-0.0148
-0.0148
-0.0165
-0.0165 | CP180 | 0.2383
0.2422
0.2430
0.2419
0.1562
0.1496
0.1521
0.1337
0.1254
0.01261
0.0973 | | CP163 (| 0.1095
0.0965
0.1014
0.1004
-0.0319
-0.032
-0.0484
-0.0518
-0.0518
-0.0637
-0.0667
-0.0658 | CP179 | 0.2167
0.2146
0.2133
0.2123
0.1181
0.1086
0.1091
0.0905
0.0833
0.0833
0.0620
0.0620 | | CP162 | 0.1586
0.0562
0.0570
0.0336
-0.0664
-0.0757
-0.0772
-0.0887
-0.0925
-0.0852
-0.0877
-0.0925 | CP178 | 0.2599 0.2058 0.1999 0.1859 0.0682 0.0656 0.0578 0.0433 0.0285 0.0285 | | CP161 | 0.0029
-0.0474
-0.0385
-0.0449
-0.1146
-0.1141
-0.1230
-0.1232
-0.1174
-0.1234
-0.1255
-0.1255 | CP177 | 0.1127
0.1369
0.1428
0.1487
0.0221
0.0261
0.0007
-0.0013
-0.0215
-0.0215
-0.0215 | | CP159 (| 0.1535 0.1535 0.1535 0.1535 0.1632 0.1602 0.1602 0.1464 0.1543 0.1543 0.1338 0.1338 | CP176 | 0.1714
0.1120
0.1137
0.1023
-0.0134
-0.0230
-0.02414
-0.0503
-0.0513
-0.0533
-0.0533
-0.0533 | | CP158 (| -0.2939
-0.2035
-0.1962
-0.1875
-0.1551
-0.1403
-0.1237
-0.1232
-0.1237
-0.1289
-0.1245 | CP175 | 0.1278
0.0478
0.0523
0.0351
-0.0658
-0.0719
-0.0795
-0.0836
-0.0889
-0.0889
-0.0889 | | CP157 (| -0.2264
-0.1760
-0.1777
-0.1687
-0.1456
-0.1381
-0.1378
-0.1278
-0.1278
-0.1228
-0.1228 | CP174 | 0.1040
-0.0139
-0.0083
-0.0403
-0.1087
-0.1160
-0.1160
-0.11085
-0.11085
-0.1115 | | CP156 (| -0.1912 -0.1594 -0.1641 -0.1612 -0.1317 -0.1317 -0.1317 -0.1253 -0.1253 -0.1161 -0.1161 -0.1161 | CP173 | 0.3242
0.3301
0.3287
0.3307
0.2490
0.2494
0.2310
0.2310
0.2050
0.2050
0.2106
0.2106 | | CP155 (| | CP172 | | | CP154 (| | CP171 | | | CP153 (| | CP170 | 0.3414
0.3249
0.3241
0.3190
0.2066
0.1970
0.1780
0.1789
0.1789
0.1789
0.1789 | | CD159 (| 2 3 3 3 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 | CD160 | 0.3372
0.2995
0.2986
0.2889
0.1873
0.1767
0.1585
0.1585
0.1584
0.1587
0.1587 | | | 2780. 27420. 24250. 24750. 24750. 24750. 2430. 2460. 2760. 2760. 2760. 1430. 1760 | <u>:</u> | 278.
178.
242.
145.
277.
245.
177.
243.
46.
276.
142. | | | | | | Table IX. Continued | | CP202 | 0.3569 | | 0.2596 | | | | | $0.1516 \\ 0.1454$ | | 0.1521 | $0.1467 \\ 0.1222$ | | | CP232 | i | 0.4594 | 0.4281 | 0.4252 | 0.4286 | 0.3276 | 0.3261 | 0.3272 | 0.2986 | 0.2974 | 0.2939 | 0.2718 | 0.2033 | 0.2503 | |--------|--------|--------------------|-----------------|--------|--------|--------------------|--------------------|---------|--------------------|--------------------|--------------------|--------------------|-------|---------|----------|----------|----------|--------|----------|----------|----------|---------------------|----------|----------|--------|----------|--|----------------------------|----------| | | CP201 | 0.2279 | | 0.2257 | 0.1654 | 0.1656 | 0.1659 | 0.1581 | $0.1524 \\ 0.1524$ | 0.1313 | 0.1345 | 0.1585 0.1048 | | į | CP231 | 1 | 0.5159 | 0.4592 | 0.4605 | 0.4562 | 0.3514 | 0.3390 | | 0.3146 | | | 0.2032 | | 0.2664 | | ,
(| CP200 | 0.3092 | 0.2386 | 0.2401 | 0.1752 | 0.1636 | 0.1594 | 0.1620 | 0.1396 | 0.1305 | 0.1413 | 0.1051 | | | CP230 | 1001 | 0.4931 | 0.4750 | | | | 0.3008 | | | | | | | | | 5 | CP199 | 0.2646 | 0.2238 | 0.2102 | 0.1583 | 0.1465 | 0.1396 | 0.1565 | 0.1179 | 0.1062 | 0.1233 0.1128 | 0.0836 | | CDoor | CF 228 | 0.5779 | | | | | 0.07.00 | | 0.3370 | | 0.3150 | | 0.3086 | | | | 00100 | CF198 | 0.2161 | 0.2070 | 0.2067 | 0.1465 | 0.1423 | 0.1391 | 0.1183 | 0.1146 | 0.1004 | $0.1021 \\ 0.0986$ | 0.0755 | | CD997 | | 0.4183 | | | | | 0.3498 | | | | | 0.2859 0 | | .2868 | 2665 | | CP107 | CI 13/ | 0.0950 | 0.1623 | 0.1871 | 0.1130 | 0.1175 | 0.1230 | 0.0939 | 0.0976 | $0.0710 \\ 0.0664$ | $0.0064 \\ 0.0730$ | 0.0469 | | CP996 (| | 0.5062 | | | 0.4173 (| | | 0.3151 | | | | 0.2753 0 | | | .2592 0. | | CP196 | 061 10 | 0.1842 | 0.1782 | 0.1733 | 0.1100 | 0.0961 | $0.0992 \\ 0.0876$ | 0.0735 | | $0.0614 \\ 0.0641$ | | 0.0392 | | CP225 (| | 0.4461 (| | | | | | $0.3229 ildo{0}$ | | | | | | 0.2766 0. | \circ | | CP195 | | 0.0733 | 0.1398 | 0.1537 | 0.0753 | 0.07070 | 0.0557 | 0.0509 | 0.0505 | 0.0220 0.0298 | | 0.0102 | | CP221 (| | | | | | | | 0.2455 - 0.2455 | | | | | | $0.1997 \ 0.1796 \ 0.1796$ | | | CP194 | | 0.1241 | 0.1417 | 0.1404 | 0.0702 | 0.0500 | 0.0482 | 0.0345 | 0.0308 | 0.0203 | 0.0204 | 0.0050 | | CP220 (| | | 0.3580 (| | | 0.2224 (| | | | | | | $0.1817 \ 0.1727 \
0.1727 \ 0$ | | 0 0101 | | CP193 | | $0.0373 \\ 0.0815$ | 0.0911 | 0.0949 | 0.0000 | 0.0069 | -0.0101 | -0.0142 | -0.0129 -0.0250 | -0.0238 | -0.0233 | -0.0418 | | CP217 | | | | 0.2881 | | | 0.1803 | | 0.1622 (| | | | $0.1595\ 0$ | | | | CP191 | , | 0.3140 0.3166 | 0.3219 | 0.3226 | 0.1925 | 0.1955 | | | | • | 0.1531 - 0.1305 | | | CP216 | | | | | | | | 0.1099 (| | | | 0.1233 | | | | | CP190 | 0,000 | 0.2950 0.3119 | 0.3109 | 0.2150 | 0.1989 | | 0.1825 | | | | $0.1444 \\ 0.1157$ | | | CP213 (| | 0.2219 (| | | | | 0.0704 0 | | 0.0545 | | | | | $0.0118 \ 0.$ | | | CP189 | 0.3014 | $0.2014 \\ 0.2732$ | 0.2699 | 0.1768 | 0.1681 | 0.1671 | 0.1514 | 0.1431 | 0.1205 | 0.1240 | $0.1213 \\ 0.0924$ | 1
1
3 | 0 | CF212 (| | | | | | | | | | 0.0378 0 | | | 0.0237 0 | | | | CP188 | 0.1965 | | 0.1895 0.1902 | | | | 0.0551 | | | | | | CDOOR | | 0.2905 | 3.2866 | 2858 (| 0.2840 | | | | | | | | | on | 1441 0 | | | CP186 | 0.3488 | 0.3182 | 0.3097 | 0.2304 | 0.2243 | | | | | | 0.1780 | | CP904 | | 0.2634 (| | | | | | | 0.1578 0 | | | | | 0.1328 - 0.00 | 1225 0. | | | CP185 | 0.3288 | | 0.3233 | 0.1896 | 0.1857 | $0.1695 \\ 0.1746$ | 0.1723 | 0.1743 | 0.1488 0.1421 | | 0.1270 | | CP203 | | | | | | | | 0.1548 0 | | | | | | 0.1355 0.000 | | | | Run | | 178.
242 | | | | | | | 276.
142 | | | | Run (| | | 178. (| | | | | | $\frac{177}{2}$. 0 | | | 2/0. 0 | | $\frac{143}{76}$ 0. | Table IX. Continued | | ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |--|---| | CP267
0.0389
0.0792
0.0784
0.0831
0.0729
0.0729
0.0650
0.0650
0.0656 | 0.3925
0.3583
0.3583
0.3518
0.3429
0.2458
0.2458
0.2465
0.2118
0.2118
0.2000
0.2000 | | CP266 (0.0517 0.0930 0.0930 0.0731 0.0697 0.0697 0.0698 0.0731 0.0618 0.0618 0.0525 0.0547 0.0547 | CP282
0.4912
0.4239
0.3936
0.2930
0.2764
0.2829
0.2606
0.2450
0.2360
0.2254
0.2353
0.2353 | | CP265 C 0.0119 C 0.0738 C 0.0863 (0.0435 C 0.0452 O 0.0452 O 0.0370 0.0370 0.0286 0.0284 0.0284 0.0284 | CP281 0.4955 0.4709 0.4582 0.4560 0.3340 0.3298 0.2953 0.2623 0.2725 | | CP264 C 0.0512 0 0.0759 0 0.0759 0 0.0759 0 0.0763 0 0.0283 0 0.0283 0 0.0182 0 0.0183 0 0.0183 0 0.0103 | CP280 0.4871 0.4854 0.4854 0.3485 0.3368 0.3368 0.3368 0.3166 0.2724 0.2775 | | CP263 C
0.0184 0
0.0499 0
0.0492 0
0.0557 0
0.0027 0
0.0027 0
0.0030 0
0.0034 0
0.0034 0
0.0052 0
0.0052 0
0.0053 0
0
0.0053 0
0
0.0053 0
0
0.0053 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | CP279 0.5650 0.5650 0.4964 0.4719 0.3526 0.3526 0.2952 0.2968 0.2698 0.2698 | | CP262 C
-0.0933 (-0.0481 (-0.0544 (-0.0544 (-0.0278 (-0.0278 (-0.0170 (-0.0278 (-0.0151 (-0.0151 (-0.0013 (-0.0007 (-0. | CP278 0.5583 0.5016 0.4918 0.3580 0.3580 0.3388 0.3109 0.3052 0.2972 0.2740 0.2844 0.2753 | | CP261 C -0.1217 -(-0.0724 -(-0.0330 -(-0.0330 -(-0.0338 -(-0.0402 -(-0.0402 -(-0.0273 -(-0.0273 -(-0.0135 -(-0.0049
-(-0.0049 | CP277 0.4380 0.4506 0.4452 0.4555 0.3307 0.3280 0.3277 0.2970 0.2995 0.2616 0.2678 | | CP260 C
-0.0886 -(-0.0805 -(-0.0936 -(-0.0944 -(-0.0458 -(-0.0458 -(-0.0512 -(-0.0512 -(-0.0322 -(-0.0258 -(-0.00332 -(-0.0058 | CP276
0.5443
0.4298
0.4160
0.2943
0.2634
0.2571
0.2600
0.2444
0.228
0.228
0.2239
0.239 | | CP259 C -0.2388 -0.0.1561 -0.0.1561 -0.0.0718 -0.0.0633 -0.0.0464 -0.0.0464 -0.0.0303 -0.0.069 -0.0.054 -0.0.0113 | CP275 0.4056 0.3606 0.3506 0.35481 0.2542 0.2411 0.2385 0.2269 0.2214 0.1973 0.2059 0.2005 | | CP258 C -0.3306 -(-0.2423 -(-0.2551 -(-0.2551 -(-0.0958 | CP274 -0.0881 -0.0934 -0.1018 -0.10710 -0.0710 -0.0788 -0.0730 -0.0608 -0.0540 -0.0145 -0.0283 -0.0306 0.0065 | | CP257 C -0.6091 -(-0.4733 -(-0.4508 -(-0.2419 -(-0.2192 -(-0.1328 -(-0.0958 -(-0. | CP273 0.3233 0.1520 0.1150 0.0743 0.0756 0.0294 0.0258 0.0258 0.0255 0.0255 0.0255 | | CP248 C 0.2851 -C 0.2583 -C 0.2583 -C 0.2583 -C 0.2471 -C 0.1509 -C 0.1509 -C 0.1458 -C 0.1458 -C 0.1356 -C 0.1356 -C 0.1356 -C 0.1356 -C 0.1356 -C 0.1356 -C 0.1206 -C 0.1356 -C 0.1206 - | CP272 -0.1678 -0.1140 -0.1184 -0.1031 -0.0806 -0.0704 -0.0683 -0.0270 -0.0383 -0.0167 -0.0411 -0.0291 | | CP247 C 0.2439 C 0.2205 C 0.2205 C 0.2153 C 0.1664 C 0.1664 C 0.1655 C 0.1645 C 0.14497 C 0.1294 C 0.1294 C 0.1294 C 0.1295 C 0.1301 C 0.1039 | CP271 -0.1145 -0.1092 -0.092 -0.0812 -0.0810 -0.0833 -0.0636 -0.0565 -0.0215 -0.0216 | | CP246 C
0.1316 (0.1420 (0.1380 (0.1388 (0.0549 (0.0549 (0.0544 (0.0450 (0.0314 (0.0314 (0.0216
(0.0216 (0.0216 (0.0216 (0.0216 (0.0216 (0.0216 (0.0216 (0.0216 (0.0216 (0.0216 | CP270 -0.0434 -0.0608 -0.0608 -0.0780 -0.0310 -0.0375 -0.0181 -0.0181 -0.0181 -0.0181 | | CP245 C -0.0438 C -0.0124 C -0.0075 C -0.0737 C -0.0742 C -0.0748 C -0.0748 C -0.0814 C -0.0835 -0.0916 -0.0917 | CP269 -0.0456 -0.0113 -0.0156 -0.0174 0.0272 0.0291 0.0424 0.0513 0.0500 0.0559 | | CP233 C
0.4421 -C
0.4240 -C
0.4251 -C
0.4307 -C
0.3327 -C
0.3312 -C
0.3339 -C
0.2998 - | CP268
0.0697
0.0637
0.0576
0.0507
0.0639
0.0639
0.0618
0.0618
0.0617
0.0617
0.0736 | | Run C 278. (178. (242.) 145. (243.) 245. 177. 243. 46. 276. 142. 143. 176. | Run
278.
178.
242.
145.
277.
44.
245.
177.
245.
177.
243.
142.
143. | | | | | CP284 | 0.5124
0.4359
0.4214
0.2117
0.2997
0.2773
0.2639
0.2482
0.2495
0.2495
0.2493
0.2327 | |-------|--| | Run | 278.
178.
242.
145.
145.
277.
245.
177.
243.
46.
276.
142.
142. | Table X. Pressure Coefficients for l/h=11.7 Cavity With Boundary-Layer Transition Strip | CP10 | -0.0783
-0.0773
-0.0713
-0.0640
-0.0395
0.0292 | CP37 | -0.0716
-0.0686
-0.0598
-0.0531 | | -0.1461
-0.1350
-0.1254
-0.1160
-0.0937 | | 2 -0.1352
1 -0.1271
4 -0.1185
0 -0.1056
8 -0.0876
4 -0.0781 | |-------------------|--|------|--|------|---|----------|--| | CP9 | -0.1223
-0.1035
-0.0983
-0.0893
-0.0587 | CP36 | CP36
-0.0591
-0.0554
-0.0470
-0.0465
-0.0353 | | -0.1587
-0.1391
-0.1225
-0.1057
-0.0893 | | -0.1712
-0.1511
-0.1314
-0.1180
-0.0968 | | CP8 | -0.10110.10770.10860.11090.0655 - | CP35 | -0.0363
-0.0774
-0.0614
-0.0566
-0.0392
-0.0347 | CP65 | -0.1725
-0.1474
-0.1322
-0.1206
-0.0992 | | -0.1602
-0.1465
-0.1249
-0.1086
-0.0901
7 -0.0797 | | CP7 | -0.1511 -0.1497 -0.1566 -0.1516 -0.0977 -0.4159 | CP34 | -0.0098
-0.0566
-0.0433
-0.0395
-0.0270 | CP50 | -0.1295
-0.1275
-0.1108
-0.1024
-0.0798 | | -0.1876
-0.1564
-0.1334
-0.1193
-0.0976 | | $^{\mathrm{CP6}}$ | -0.1556 -
-0.1733 -
-0.1996 -
-0.2105 -
-0.3554 - | CP33 | -0.0885
-0.0558
-0.0420
-0.0357
-0.0235
-0.0190 | CP49 | -0.1825
-0.1477
-0.1297
-0.1114
-0.0934
-0.0827 | CP104 | -0.1493
-0.1418
-0.1223
-0.1140
-0.0912 | | CP5 | -0.2088 -1
-0.2170 -
-0.2549 -
-0.2781 -
-0.4192 - | | -0.0953 -0.0543 -0.0543 -0.0197 -0.0161 -0.0093 | CP48 | -0.1382
-0.1325
-0.1147
-0.1088
-0.0834
-0.0758 | CP103 | -0.1696
-0.1478
-0.1269
-0.1137
-0.0937 | | CP4 | -0.2212 -
-0.2359 -
-0.2810 -
-0.3027 -
-0.4058 -
-0.3332 - | CP20 | -0.0367
-0.0373
-0.0268
-0.0310
-0.0156
-0.0064 | CP47 | -0.1622
-0.1373
-0.1168
-0.0978
-0.0788 | CP102 | -0.1421
-0.1381
-0.1205
-0.1114
-0.0895 | | CP3 | -0.2559 -0.2698 -0.3215 -0.3269 -0.3269 -0.3269 -0.3269 -0.3929 -0.3116 -0.316 -0.3116 | CP19 | -0.0740
-0.0489
-0.0348
-0.0269
-0.0166
-0.0044 | CP46 | -0.1491
-0.1320
-0.1134
-0.0946
-0.0792
-0.0668 | CP101 | -0.1635
-0.1459
-0.1279
-0.0967
-0.0967 | | CP2 | -0.3176 -(-0.3312 -(-0.4439 -(-0.4865 -(-0.3781 -(-0.2770 - | CP18 | -0.0419 -0.0344 -0.0237 -0.0179 -0.0081 -0.0062 | CP45 | -0.1621
-0.1409
-0.1239
-0.1125
-0.0912 | CP100 | -0.1529
-0.1361
-0.1197
-0.1033
-0.0874
-0.0786 | | CP1 | 0.7186 -(
0.9184 -(
1.0784 -(
1.1322 -(
1.1760 -(
1.2395 -(| CP17 | -0.0799 -0.0498 -0.0361 -0.0262 -0.0161 -0.0001 | CP44 | $\begin{array}{c} -0.1370 \\ -0.1301 \\ -0.1135 \\ -0.1023 \\ -0.0808 \\ -0.0725 \end{array}$ | CP99 | -0.1565
-0.1431
-0.1276
-0.1224
-0.0977
-0.0927 | | $T_{t\infty}$ | | CP16 | -0.0576 - | CP43 | 0.0223
0.0560
0.0703
0.0673
0.0718
0.0680 | CP98 | -0.1381
-0.1330
-0.1185
-0.1119
-0.0898
-0.0826 | | Ü | 71.6
199.5
242.9
267.7
286.2
322.9 | CP15 | -0.0842 -0.0527 -0.0401 -0.0277 -0.0191 -0.0168 | CP42 | -0.0373
-0.0357
-0.0409
-0.0425
-0.0355 | CP97 | -0.1696
-0.1436
-0.1248
-0.1130
-0.0904
-0.0829 | | ĝ | Ptx
1134.8
994.6
817.9
841.4
847.5 | CP14 | -0.0612 -0.0522 -0.0422 -0.0376 -0.0236 -0.0138 | CP41 | | CP85 | 99977 | | ξ | $P\infty$ 1061.4 1 776.2 532.7 520.9 497.6 515.2 | CP13 | -0.0921 -
-0.0719 -
-0.0602 -
-0.0558 -
-0.0369 - | CP40 | | CP84 | -0.1507
-0.1391
-0.1219
-0.1089
-0.0895 | | 9-01 | $M_{\infty} \ K_{\infty} \times 10^{-5}$ $0.31 \ 1.1$ $0.61 \ 1.6$ $0.81 \ 1.5$ $0.91 \ 1.7$ $0.95 \ 1.8$ | CP12 | -0.0765
-0.0662
-0.0572
-0.0476
-0.0315 | CD30 | -0.0170
0.0024
-0.0044
-0.00175
-0.0097 | CP80 | -0.1408
-0.1341
-0.1191
-0.0905
-0.0838 | | ; | $M_{\infty} = K_{\zeta}$ 0.31 0.61 0.81 0.86 0.91 0.95 | CP11 | -0.1047
-0.0811
-0.0715
-0.0603
-0.0408 | 960 | -0.0467
-0.0460
-0.0497
-0.0519
-0.0429 | CD68 | 0.0550
0.0608
0.0427
0.0245
0.0165 | | | Run
97.
296.
196.
295.
195.
94. | Run | | ¢ | Kun
97.
296.
196.
295.
195. | <u>с</u> | 7.00
97.
296.
196.
295.
195. | Table X. Continued | CP135 | -0.1833
-0.1633
-0.1397
-0.1267
-0.1027
-0.0948 | CP151 | -0.0618
-0.0689
-0.0976
-0.1014
-0.0882
-0.0841 | | CP168 | 0.3738
0.4323
0.4527
0.4497
0.4352
0.4154 | Ę |
0.4396
0.4376
0.4976
0.5125
0.5108
0.4702 | |-----------|--|-------|---|----------|---------|---|-------|---| | CP134 | -0.1653
-0.1456
-0.1276
-0.1095
-0.0932 | CP150 | -0.1319
-0.1370
-0.1304
-0.1249
-0.1010
-0.0930 | ָ
בַּ | CP167 | 0.2790
0.3503
0.3878
0.3980
0.3919 | CD109 | | | CP133 | -0.1771
-0.1533
-0.1356
-0.1234
-0.1023 | CP149 | -0.1833
-0.1697
-0.1460
-0.1398
-0.1094
-0.1027 | CD166 | CF100 | $\begin{array}{c} 0.2530 \\ 0.2977 \\ 0.3413 \\ 0.3529 \\ 0.3562 \\ 0.3482 \end{array}$ | CD189 | | | CP132 | -0.1490
-0.1414
-0.1262
-0.1170
-0.0967
-0.0884 | CP148 | -0.1531
-0.1522
-0.1307
-0.1225
-0.0959 | CPIRK | CF 103 | 0.1781
0.2457
0.2945
0.3158
0.3183 | CP181 | 0.3504
0.4268
0.4503
0.4537
0.4374
0.4374 | |) CP131 | -0.1643
-0.1491
-0.1323
-0.1243
-0.1013 | CP147 | -0.1769
-0.1552
-0.1355
-0.1249
-0.1017 | CP164 | FOI 10 | 0.1858
0.2314
0.2770
0.2913
0.2911 | CP180 | 0.3036
0.3694
0.4058
0.4191
0.4081 | |) CP130 | -0.1431
-0.1381
-0.1217
-0.1135
-0.0913 | CP146 | -0.1443
-0.1402
-0.1246
-0.1139
-0.0941
-0.0892 | CP163 | • | 0.1499
0.2120
0.2537
0.2687
0.2539
0.2539 | CP179 | 0.2324
0.2981
0.3436
0.3586
0.3618
0.3562 | | CP129 | -0.1695
-0.1490
-0.1315
-0.1258
-0.1007
-0.0951 | CP145 | -0.1725
-0.1555
-0.1397
-0.1351
-0.1097 | CP162 | | 0.1859
0.2245
0.2464
0.2393
0.2124
0.1804 | CP178 | 0.2217
0.2634
0.3093
0.3206
0.3301
0.3237 | | CP124 | 0.1734
0.1695
0.1012
0.0677
0.0426
0.0297 | CP144 | -0.1498
-0.1411
-0.1280
-0.1194
-0.0992
-0.0906 | CP161 | • | 0.1498
0.2118
0.2047
0.1866
0.1455
0.1137 | CP177 | 0.1469
0.2207
0.2695
0.2923
0.2928
0.2831 | | CP123 | 0.1000
0.1076
0.0654
0.0372
0.0223
0.0085 | CP143 | -0.1547
-0.1448
-0.1308
-0.1270
-0.1016
-0.0956 | CP159 | 0.1800 | 0.1323
0.1505
0.0714
0.0300
0.0092
-0.0057 | CP176 | 0.1745
0.2207
0.2612
0.2706
0.2638
0.2428 | | CP115 | 0.1059
0.1545
0.1798
0.1883
0.1931
0.1896 | CP142 | -0.1326
-0.1348
-0.1218
-0.1196
-0.0945 | CP158 | 0 1504 | -0.1378
-0.1378
-0.1315
-0.0145
-0.0979 | CP175 | 0.1662
0.2164
0.2426
0.2383
0.2167
0.1864 | | | 0.1114
0.1412
0.1579
0.1622
0.1624
0.1563 | CP141 | 0.1670
0.1992
0.1516
0.1164
0.0773
0.0526 | CP157 | -0 1741 | -0.1551
-0.1350
-0.1270
-0.1018
-0.0952 | CP174 | 0.1942
0.2268
0.2200
0.1953
0.1615
0.1276 | | | 0.0551 0.1038 0.1149 0.1160 0.1125 0.1032 | CP140 | 0.1646
0.1523
0.0749
0.0356
0.0111
-0.0032 | CP156 | -0.1409 | -0.1398
-0.1245
-0.1192
-0.0961
-0.0904 | CP173 | 0.3908
0.4642
0.4868
0.4907
0.4720
0.4560 | | | 0.0713
0.0922
0.0894
0.0807
0.0721
0.0617 | CP139 | $\begin{array}{c} 0.0612 \\ 0.0431 \\ -0.0240 \\ -0.0517 \\ -0.0534 \\ -0.0584 \end{array}$ | CP155 | -0.1610 | -0.1451
-0.1297
-0.1224
-0.0997
-0.0924 | CP172 | 0.4499
0.5187
0.5248
0.5205
0.4907
0.4627 | | _ | 0.0314
0.0540
0.0358
0.0240
0.0151
0.0084 | | -0.0302
-0.0573
-0.0904
-0.1010
-0.0862
-0.0830 | CP154 | 0.1888 | 0.2145
0.1635
0.1313
0.0922
0.0658 | CP171 | $\begin{array}{c} 0.4513 \\ 0.5160 \\ 0.5225 \\ 0.5090 \\ 0.4864 \\ 0.4616 \end{array}$ | | | 0.0170
0.0094
-0.0203
-0.0354
-0.0354 | CP137 | -0.1679 -0.1484 -0.1422 -0.1301 -0.1082 -0.0998 | CP153 | 0.1339 | 0.1469
0.0680
0.0374
0.0109
-0.0036 | CP170 | 0.4369
0.5025
0.5094
0.5054
0.4785
0.4558 | | CP109 | -0.0687
-0.0890
-0.0850
-0.0743
-0.0687 | | -0.1081 -0.1617 -0.1403 -0.1308 -0.1040 -0.0955 | CP152 | 0.0802 | 0.0557
-0.0161
-0.0421
-0.0453
-0.0503 | CP169 | 0.3910
0.4612
0.4749
0.4679
0.4495
0.4277 | | Run
97 | 296.
196.
295.
195.
94. | Run | 296.
196.
295.
195.
94. | Run | 97. | 296.
196.
295.
195.
94. | Run | 97.
296.
196.
295.
195.
94. | | | | | | | | | | | Table X. Continued | CP202
0.3685
0.4240 | 0.4473
0.4375
0.4262
0.4119 | CP232 | 0.5286
0.6061
0.6165
0.6162
0.5911
0.5702 | CP267 | 0.0302
0.0842
0.1310
0.1474
0.1720
0.1885 | CP283 | 0.4687
0.5418
0.5646
0.5642
0.5431
0.5184 | |--------------------------------------|--|----------|---|---------|--|---------|---| | CP201 CP
0.3061 0.3
0.3943 0.4 | | CP231 CI | 0.5511 0.
0.6342 0.
0.6372 0.
0.6293 0.
0.5860 0. | CP266 C | 0.0545 0
0.0996 0
0.1442 0
0.1649 0
0.1853 0
0.2020 0 | CP282 (| 0.5502
0.6270
0.6412
0.6403
0.6125
0.5900 | | CP200 CP
0.3215 0.3 | | CP230 Cl | 0.5677 0.
0.6493 0.
0.6503 0.
0.6487 0
0.6183 0 | CP265 C | 0.0272 C
0.0859 C
0.1297 C
0.1491 C
0.1704 C | CP281 (| 0.5440
0.6649
0.6737
0.6564
0.6288 | | CP199 CI
0.2682 0. | | CP228 C | 0.5729 0
0.6393 0
0.6411 0
0.6273 0
0.6051 0 | CP264 (| 0.0496
0.0906
0.1288
0.1461
0.1638 | CP280 | 0.5711
0.6790
0.6862
0.6658
0.6277
0.6038 | | CP198 C | | CP227 (| 0.5230 (0.6051 (0.6206 (0.5290 (0.5811) | CP263 | 0.0306
0.0783
0.1134
0.1297
0.1440
0.1525 | CP279 | 0.5900
0.6710
0.6708
0.6354
0.6012
0.5799 | | • | 0.2809
0.3294
0.3545
0.3528
0.3487 | CP226 (| 0.5189
0.5818
0.6011
0.5993
0.5803
0.5675 | CP262 | -0.1155
-0.1049
-0.1184
-0.1123
-0.0771 | CP278 | 0.5929
0.6688
0.6671
0.6493
0.6106
0.5901 | | _ | 0.2686
0.3122
0.3280
0.3333
0.3290 | CP225 | 0.4765
0.5673
0.5908
0.5932
0.5755 | CP261 | -0.1599
-0.1476
-0.1695
-0.1719
-0.1313 | CP277 | 0.5410
0.6362
0.6474
0.6554
0.6173
0.6005 | | • | 0.2336 0
0.2781 0
0.3019 0
0.3045 0 | CP221 (| 0.4383
0.5225
0.5375
0.5383
0.5090
0.4889 | CP260 | -0.1674
-0.1926
-0.2306
-0.2432
-0.1960 | CP276 | 0.5403
0.5870
0.6107
0.6018
0.5923
0.5745 | | CP194 C | | CP220 (| 0.4628
0.5128
0.5238
0.5088
0.4843 | CP259 | -0.2898
-0.3237
-0.3802
-0.3763
-0.3146
-0.2904 | CP275 | 0.4284
0.4983
0.5379
0.5433
0.5353
0.5188 | | | 0.1777 C
0.2122 C
0.2262 C
0.2328 C
0.2311 C | CP217 (| 0.3622
0.4456
0.4713
0.4718
0.4545
0.4323 | CP258 | | CP274 | -0.1513
-0.1944
-0.2491
-0.2615
-0.2253 | | - | 0.5175 C
0.5276 C
0.5323 C
0.4976 C | CP216 (| | CP257 | | CP273 | $\begin{array}{c} 0.0884 \\ 0.0903 \\ 0.1338 \\ 0.0916 \\ 0.1483 \\ 0.1630 \end{array}$ | | CP190 C | | CP213 (| | CP248 | 0.3047
0.3659
0.4081
0.4158
0.4180
0.4095 | CP272 | 1 1 1 1 1 1 | | CP189 C | | CP212 (| | CP947 | 0.3076
0.3814
0.4167
0.4208
0.4141
0.4005 | CP971 | -0.1682
-0.2054
-0.2549
-0.2683
-0.2332
-0.2321 | | CP188 (| | CP905 | | 7.D946 | 0.1816
0.2298
0.2691
0.2819
0.2865 | CP970 | | | _ | 0.4000
0.4542
0.4812
0.4845
0.4845
0.4700
0.4531 | 7 70000 | | Д
Л | 0.0764
0.1264
0.1498
0.1608
0.1597
0.1523 | CDSEO | -0.0422
-0.0010
0.0331
0.0476
0.0733 | | _ | 0.4126 0.4873 0.5068 0.5073 0.4852 0.4620 0.4620 | | 0.3203
0.4285
0.4387
0.4197
0.4111 | | 0.4825
0.5777
0.5979
0.6006
0.5812
0.5660 | 9,600 | 0.0332
0.0673
0.1100
0.1185
0.1458
0.1618 | | _ | 97. 0
296. 0
196. 0
295. 0
195. 0 | | Fun 97. 97. 196. 196. 195. 195. 94. | | Run
97.
296.
196.
295.
195. | Ç | Kun
97.
296.
196.
295.
195. | | CP284 | 0.5360
0.5957
0.5980
0.5714
0.5451
0.5248 | |-------|--| | Kun | 97.
296.
196.
295.
195.
94. | Table XI. Pressure Coefficients for l/h = 11.7 Cavity With Front Blocks and Boundary-Layer Transition Strip | CP10
-0.0959
-0.0741
0.0125 | CP37
-0.0938
-0.0548
-0.0370 | CP113
0.0113
0.0908 | CP140
0.1994
0.1644
0.0030 | CP164
0.2026
0.2527
0.2677 |) CP180
1 0.3830
4 0.4230 | |---|--|--|--|--|---------------------------------| | CP9
-0.1321 -
-0.0986 - | CP36
-0.0691
-0.0423
-0.0452 | CP112
0.0231
0.0672
0.0442 | CP139
0.1082
0.0727
-0.0556 | CP163
0.1758
0.2351
0.2324 | CP179
0.2851
0.3414 | | CP8
-0.1219 -C
-0.1046 -C | CP35
-0.1039 -(-0.0608 -(-0.0486 -(- | CP1111 -0.0117 0.0300 -0.0050 | CP138
0.0213
-0.0107
-0.0919 | CP162
0.2005
0.2445
0.1753 | CP178
0.2526
0.2939 | | CP7
-0.1679 -
-0.1419 - | CP34
-0.0831 -
-0.0459 - | CP110
-0.0284
-0.0143
-0.0664 | CP137
-0.1156
-0.0967
-0.1058 |
CP161
0.1763
0.2310
0.1263 | 5 CP177
5 0.1798
2 0.2451 | | CP6
-0.1846 -
-0.1732 - | CP33
-0.0857
-0.0408
-0.0250 | CP109
-0.1319
-0.1012
-0.0877 | CP136
-0.1660
-0.1380 | CP159
0.1343
0.1060
-0.0309 | CP176
0.1945 | | CP5
-0.2367 -
-0.2164 - | CP21
-0.0919 -
-0.0443 -
0.0061 - | CP108
-0.2046
-0.1600
-0.0996 | CP135
-0.2383
-0.1802
-0.1225 | CP158
-0.1969
-0.1524
-0.0942 | CP175
0.1828
0.2273 | | CP4
-0.2506 -(
-0.2405 -(| CP20
-0.0519
-0.0270 | CP107
-0.2353
-0.1697
-0.1045 | CP134
-0.2540
-0.1876
-0.0914 | CP157
-0.2671
-0.1933
-0.1139 | CP174
0.1989
0.2186 | | CP3
-0.2865 -(
-0.2703 -(| CP19
-0.0794 -1
-0.0371 -1 | CP68
0.0154 -
0.0417 - | CP133
-0.2667
-0.1908
-0.1039 | CP154
0.1830
0.1820
0.0476 | CP173
0.4466
0.4919 | | CP2
-0.3590 -0.3229 -0.2857 -0.2857 | CP18
-0.0568 -(
0.0009 - | CP67
-0.2197
-0.1629 | CP132
-0.2458
-0.1785 | CP153
0.1154
0.0997
-0.0160 | CP172
0.5416
0.5538 | | CP1
0.8181 -0
0.9494 -0
1.2506 -0 | CP17
-0.0812 -(
0.0005) | CP47
-0.25830.1812 - | CP131
-0.2542
-0.1809
-0.1043 | CP152
0.0419
0.0019 | CP171
0.5960
0.6120 | | $T_{t\infty}$ 67.2 (76.6 (102.3 1 | CP16
-0.0659 -0.0363 -0.0060 | CP43
0.0262 -
0.0710 -
0.0499 - | CP130
-0.2455
-0.1760
-0.0961 | CP151
-0.1073
-0.0981
-0.0993 | CP170
0.5780
0.5923 | | q_{∞} 60.4 185.1 309.0 | CP15
-0.0866 -
-0.0468 -
0.0132 | CP42
-0.0526
-0.0319
-0.0449 | CP129
-0.2529
-0.1805
-0.1057 | CP150
-0.1841
-0.1497
-0.1156 | CP169
0.5093
0.5415 | | $p_{t\infty}$ 1087.0 946.0 876.2 | CP14
-0.0741 -1
-0.0467 -1 | CP41
-0.0887
-0.0424
-0.0266 | CP124
0.1518
0.1171
0.0036 | CP149
-0.2431
-0.1816 | CP168
0.4652
0.4927 | | p_{∞} 1025.3 1 743.9 491.4 | CP13
-0.1069 -1
0.0135 | CP40
0.0340
0.0698
0.0612 | CP123
0.0391
0.0547
-0.0253 | CP148
-0.2344
-0.1818 | CP167
0.3366
0.3886 | | $M_{\infty} R_{\infty} \times 10^{-6}$ 0.29 1.0 0.60 1.6 0.95 1.7 | CP12
-0.0881
-0.0626
0.0440 | CP39
-0.0210
0.0096
-0.0313 | CP115
0.0699
0.1300
0.1756 | CP147
-0.2702
-0.1944
-0.1076 | CP166
0.2841
0.3272 | | $M_{\infty} R_{\circ}$ 0.29 0.60 0.95 | CP11
-0.1142
-0.0754
0.0433 | CP38
-0.0614
-0.0543 | CP114
0.0596
0.1116
0.1421 | CP141
0.1956
0.2133
0.0629 | CP165
0.2057
0.2702 | | Run
91.
90.
292. | Run
91
90
292. | Run
91.
90. | Run
91.
90.
292. | Run
91.
90.
292. | Run
91. | Table XI. Concluded | i
i | CP198
0.3036
0.3456
0.3321 | ·
} | CP227
0.6929
0.7230
0.7052 | | CP263
0.0340
0.0972
0.1517 | | CP279
0.8776
0.8890
0.8061 | | |-------------------------|---|-------------------------|---|-------------------|---|-------------|---|-----------------------------------| | 200 | 0.2380 0.3036
0.2975 0.3456
0.3266 0.3321 | | 0.6173 0
0.6496 0
0.6094 0 | | CP262 C
-0.1150 0
-0.0535 0.
-0.0618 0. | | CP278 CJ
0.8626 0
0.8702 0.3
0.7956 0.3 | | | CD10c | 0.2362
0.2757
0.2958 | | $\begin{array}{c} \text{CF225} \\ 0.5972 \\ 0.6453 \\ 0.6282 \end{array}$ | | CP261
0.1463
0.0914
0.1244 | | CP277 C
0.7640 0
0.7955 0
0.7337 0 | | | CP105 | | CD991 | 0.5445
0.5796
0.5291 | | 3 -0.3184 -0.1699 -
-0.2946 -0.1438 -
-0.3108 -0.2055 - | | 0.6565 (0.6704 (0.5529 (| | | CP194 | | CP990 | | | -0.3184
-0.2946
-0.3108 | CD97E | | | | CP189 CP190 CP191 CP193 | 0.1016
0.1619
0.2149 | CP213 CP216 CP217 | $\begin{array}{c} 0.4620 \\ 0.5031 \\ 0.3866 \end{array}$ | CPoss | 0.5975
0.5491
0.4597 | CP974 | | | | CP191 | $\begin{array}{c} 0.5087 \\ 0.5313 \\ 0.4004 \end{array}$ | CP216 | $\begin{array}{c} 0.4730 \\ 0.5053 \\ 0.3921 \end{array}$ | CP257 | -0.8456
-0.6972
-0.6539 | CP273 | 0.0658 -0.1990
0.1235 -0.1820
0.0629 -0.2428 | | | CP190 | $\begin{array}{c} 0.5395 \\ 0.5577 \\ 0.4825 \end{array}$ | CP213 | $\begin{array}{c} 0.2431 \\ 0.3014 \\ 0.2910 \end{array}$ | CP248 | 0.3433
0.4004
0.3576 | CP272 | | | | | | CP212 | $\begin{array}{c} 0.2580 \\ 0.2991 \\ 0.2947 \end{array}$ | CP247 | $0.3779 \\ 0.4149 \\ 0.3293$ | CP271 | -0.2162 -0.1954 -0.2529 - | | | CP188 | $\begin{array}{c} 0.2323 \\ 0.2802 \\ 0.3029 \end{array}$ | CP205 | 0.3323 0.4135 0.3820 | CP246 | $\begin{array}{c} 0.1807 \\ 0.2262 \\ 0.2587 \end{array}$ | CP270 | -0.1387 -0.2162 -0.2040
-0.1059 -0.1954 -0.1804
-0.1194 -0.2529 -0.2161 | | | CP186 | 0.4589 · 0.4091
0.4928 0.4575
0.3842 0.4264 | CP204 | 0.3561 0.3997 0.3205 | CP245 | 0.0411 0.1047 0.1482 | CP269 | -0.0662
-0.0016
-0.0278 | | | CP185 | | CP203 | 0.3586 0.4106 0.3730 | CP233 | $\begin{array}{c} 0.5818 \\ 0.6404 \\ 0.6280 \end{array}$ | CP268 | 0.0159 .
0.0751 .
0.1046 | CP284 | | CP181 CP182 CP183 CP184 | 6 0.5247
0.5489
0.4759 | CP199 CP200 CP201 CP202 | 0.4336 0.4386 0.3684 | CP232 | 0.6502 0.6730 0.6170 | CP266 CP267 | $\begin{array}{c} 0.0272 \\ 0.1001 \\ 0.1620 \end{array}$ | CP283 | | 2 CP18; | 0.4835
0.5170
0.4639 | CP201 | 0.3842 0.4351 0.3557 | CP228 CP230 CP231 | 0.7383
0.7544
0.6785 | CP266 | 0.0492 0.1140 0.1976 | CP282 | | 1 CP182 | 0.4745
0.4910
0.4362 | CP200 | $\begin{array}{c} 0.3817 \\ 0.4215 \\ 0.3315 \end{array}$ | CP230 | 3 0.7727
9 0.7924
8 0.7660 | CP265 | $\begin{array}{c} 0.0327 \\ 0.1063 \\ 0.1819 \end{array}$ | CP281 | | n CP18. | 0.4320 0.4621 0.4072 | ، CP199 | $\begin{array}{c} 0.3173 \\ 0.3760 \\ 0.3166 \end{array}$ | | 0.7636
0.7789
0.7443 | CP264 | $\begin{array}{c} 0.0486 \\ 0.1080 \\ 0.1754 \end{array}$ | Run CP280 CP281 CP282 CP283 CP284 | | Run | 91.
90.
292. | Run | 91.
90.
292. | Run | 91.
90.
292. | Run | 91.
90.
292. | Run | $\begin{array}{c} 0.6675 \\ 0.6666 \\ 0.6041 \end{array}$ 0.7073 0.5189 (0.7064 0.5629 (0.5843 0.5043 (0.8230 0.8222 0.7208 $\begin{array}{c} 0.8814 \\ 0.8789 \\ 0.8282 \end{array}$ 91. 90. 292. Figure 1. Sketches of cavity flow field models at supersonic speeds (ref. 4). Figure 2. Operating conditions for DTRC 7- by 10-Foot TWT (ref. 19). ## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH Figure 3. Transonic cavity flow model installed in DTRC 7- by 10-Foot TWT. Figure 4. Schematic drawing of transonic cavity flow model. (All dimensions are in feet unless otherwise noted.) (b) Rear block (shallow cavity only). Figure 5. Nonrectangular cavity configurations. (a) Fence placement on model. (b) Enlarged frontal view of fence. Figure 6. Model configuration with leading-edge fence. (All dimensions are in inches unless otherwise noted.) Figure 7. Static pressure orifice locations. Figure 8. Schematic drawing of boundary-layer rake. (All dimensions are in inches.) ## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH Figure 9. Boundary-layer rake installed on model. Figure 10. Estimation of boundary-layer thickness. Figure 11. Variation of cavity floor centerline pressure distributions with time where l/h = 4.4, $M_{\infty} = 0.60$, and $R_{\infty} = 3.5 \times 10^6$. (Individual data samples are plotted.) Figure 12. Variation of cavity floor centerline pressure distributions with time where l/h = 4.4, $M_{\infty} = 0.60$, and $R_{\infty} = 1.6 \times 10^6$. (Individual data samples are plotted.) Figure 13. Variation of cavity floor centerline pressure distributions with time where $l/h=11.7,\,M_{\infty}=0.60,\,$ and $R_{\infty}=3.5\times 10^6.$ (Individual data samples are plotted.) Figure 14. Repeatability of centerline pressure distributions where $l/h=4.4,\,M_{\infty}=0.60,\,{\rm and}\,\,R_{\infty}=3.5\times 10^6.$ (Each point is an average of 20 data samples.) Figure 15. Range of static pressure measurements along cavity floor centerline where $l/h=4.4,\ M_{\infty}=0.60,$ and $R_{\infty}=3.5\times10^6.$ Figure 16. Repeatability of centerline pressure distributions where l/h = 11.7, $M_{\infty} = 0.60$, and $R_{\infty} = 3.5 \times 10^6$. (Each point is an average of 20 data samples.) Figure 17. Effect of Mach number on centerline pressure distributions where l/h=4.4. (An average of 100 data samples is plotted.) Figure 18. Effect of Mach number on centerline pressure distributions where l/h = 11.7. (An average of 100 data samples is plotted.) Figure 19. Effect of Reynolds number on centerline pressure distributions where l/h=4.4 and $M_{\infty}=0.60$. (An average of 100 data samples is plotted.) Figure 20. Effect of Reynolds number on centerline pressure distributions where l/h = 11.7 and $M_{\infty} = 0.60$. (An average of 100 data samples is plotted.) Figure 21. Effects of boundary-layer thickness on centerline pressure distributions where l/h = 11.7, $M_{\infty} = 0.95$, and $R_{\infty} = 1.7 \times 10^6$. (An average of 100 data samples is plotted.) Figure 22. Comparison of cavity longitudinal pressure distributions where $l/h=4.4,\ M_{\infty}=0.95,\ {\rm and}\ R_{\infty}=1.7\times 10^6.$ (An average of 100 data samples is plotted.) (a) Forward face. (b) Rear face. Figure 23. Comparison of cavity lateral pressure distributions where l/h = 4.4, $M_{\infty} = 0.95$, and $R_{\infty} = 0.95$ 1.7×10^6 . (An average of 100 data samples is plotted.) Figure 24. Comparison of cavity longitudinal pressure distributions where $l/h=11.7,\ M_{\infty}=0.95,\ {\rm and}\ R_{\infty}=1.7\times 10^6.$ (An average of 100 data samples is plotted.) (a) Forward
face (z/h = -0.33). (b) Rear face (z/h = -0.33). Figure 25. Comparison of cavity lateral pressure distributions where $l/h=11.7,\ M_{\infty}=0.95,\ {\rm and}\ R_{\infty}=1.7\times 10^6.$ (An average of 100 data samples is plotted.) Figure 26. Effects of cavity shape on centerline pressure distributions where $l/h=11.7,\ M_\infty=0.95,\ {\rm and}\ R_\infty=1.7\times 10^6.$ (An average of 100 data samples is plotted.) Figure 27. Effects of upstream fence on centerline pressure distributions. (An average of 100 data samples is plotted.) Figure 28. Effects of Mach number on centerline pressure distributions for cavity with fence where l/h = 11.7. (An average of 100 data samples is plotted.) Figure 29. Effects of boundary-layer thickness on centerline pressure distributions for cavity with front blocks where l/h = 11.7, $M_{\infty} = 0.95$, and $R_{\infty} = 1.7 \times 10^6$. (An average of 100 data samples is plotted.) Figure 30. Effect of cavity shape on centerline pressure distributions where $l/h=4.4,\ M_{\infty}=0.60.$ and $R_{\infty}=3.5\times10^6.$ (An average of 100 data samples is plotted.) Figure 31. Variation of cavity floor centerline pressure distributions with time for cavity with front blocks where $l/h=4.4,~M_{\infty}=0.60,$ and $R_{\infty}=3.5\times10^6.$ (Individual data samples are plotted.) | National Aeronautics and Space Administration | Report Documentation Page | | | | | | | |---|--|--|--
---|--|--|--| | . Report No.
NASA TM-4209 | 2 | 2. Government Accession No. | 3 | . Recipient's Cata | log No. | | | | . Title and Subtitle | | | 5 | . Report Date | | | | | Three-Dimensional Cavity | Flow 1 | Fields at Subsonic and ' | Transonic | September | 1990 | | | | Speeds | | | 5. Performing Orga | | | | | | 7. Author(s) E. B. Plentovich | | 8. Performing Organization Report No. L-16760 | | | | | | |). Performing Organization Name and | | 0. Work Unit No. | | | | | | | NASA Langley Research C | | 505-68-91-12 | | | | | | | Hampton, VA 23665-5225 | | | 11. Contract or Grant No. | | | | | | - | | | | 13. Type of Repor | t and Period Covered | | | | 2. Sponsoring Agency Name and Add | | | | | 1emorandum | | | | National Aeronautics and Space Administration
Washington, DC 20546-0001 | | | | 14. Sponsoring Ag | | | | | An experimental investigat in cavities over the subsoni was tested over a Mach n 1.0×10^6 to 4.2×10^6 . Two with rectangular and nonrethe model walls were obtain boundary layer approaching pressure rake. The static p = 4.4) at Reynolds number data sampling time and for less unsteadiness at lower with the shallow cavity. Cavity analyses at transonic consideration of the instant the shallow-cavity static player entering the cavity. | c and umber o sizes ectang ned, a g the coressurers greer all cores Althouch free-staneout and cores at an ectaneout ec | transonic speed regimes range of 0.30 to 0.95 of cavities with length-
gular cross sections were and a complete tabulation cavity was turbulent, and the measurements obtained attentions tested with the conditions tested with the conditions tested with the conditions of the conditions, the conditions, the constraint of the conditions, the constraint of the conditions of the conditions, the constraint of the conditions t | s. A rectangue and at Reyre-to-height rave tested. Externo of the present the thickness with the defoot showed he shallow can deep cavity are distributed at a present of the shallow of the shallow can be shallowed the shallow can be shallowed the shallow can be shallowed to the shallow can be shallowed to the shallow can be shallowed to the shallowed | plar, three-dimension of the numbers (l/h) of 4. The considering the sure data are placed as well as the sure data are placed in this report. The data also the data also the data also the number of the data also al | per foot from 4 and 11.7 and ressure data on presented. The red with a total afiguration (l/h ions during the a showed much much mused in past rt indicate that so indicate that | | | | 17. Key Words (Suggested by Authors
Cavity flow
Transonic speeds
Pressure measurements
Turbulent boundary layer | | 18. | | ified—Unlimit | | | | | | | | | Subject Category 02 | | | | | 19. Security Classif. (of this report) | | 20. Security Classif. (of this p | page) | 21. No. of Pages 81 | 22. Price
A05 | | | | Unclassified | | Unclassified | | ¥ I | | | |